

 < Day Day Up >

The Windows Kernel

Now that we've seen how attackers have their way with the Linux kernel, as well as how we can

stop them, we turn our attention to the Windows kernel. Given its widespread popularity on

desktops and servers, the Windows operating system and its underlying kernel are a choice

target for attack by the bad guys. In this section, we'll start by discussing what the Windows

kernel is and going on an adventure looking for kernel artifacts, just like we did for Linux in the

last section. After that, we'll see how attackers can invade and manipulate the Windows kernel.

For this discussion, we'll focus on the Windows 2000 kernel, the most widely deployed

professional version of Windows at the time of this writing. The Windows NT, XP, and 2003

kernels are quite similar to the Windows 2000 kernel, but include minor differences due to the

evolution of the kernel over time. I'm very happy to point out that the techniques and tools

we'll draw on during our Windows kernel adventure all function on Windows 2000, XP, and

2003. So, as we look at various Windows kernel artifacts, you should be able to follow along

with your own machine if you use Windows 2000, XP, or 2003. The innards of Win9x (including

Windows Me) differ radically, and won't be our focus in this chapter. So, without further adieu,

grab your dusty old cowboy hat and bullwhip as we go on an archeological adventure in the

Windows kernel.

Adventures in the Windows Kernel

Oh my God! It's full of stars!

—Dialogue from the movie 2001: A Space Odyssey, 1968

As you'd certainly expect, the Windows kernel includes numerous components for interacting

with and supporting user-mode processes. As we'll see, a lot of the concepts we covered in the

Linux kernel have directly analogous ideas in the Windows kernel. After all, they are both

operating system kernels, trying to achieve the same goal: servicing user-mode programs by

sitting in between these processes and the hardware. The overall Windows kernel architecture

is shown in Figure 8.21.

Figure 8.21. An overview of the Windows kernel and its relationship to
vital user-mode components.

To get a feel for how all of these layers operate, let's start out at the top: user-mode processes,

the programs you run on a day-to-day basis, such as your favorite word processor, a game, or

Pagina 1 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

even an e-mail server. To interact with the operating system, a user-mode process makes

function calls into various Win32 subsystem DLLs, roughly analogous to the system libraries we

discussed earlier for Linux. When developers create programs to run on Windows, these Win32

function calls are the crucial interface into Windows itself, implementing the API into the

Windows operating system. These DLLs include all kinds of capabilities, such as displaying

information on the screen, opening files, or running other programs.

To encourage development of applications for Windows, Microsoft has provided a great deal of

documentation about the function calls available in the Win32 subsystem DLLs. The Win32 DLLs

are grouped into several different files, each with its own lump of code to accomplish certain

tasks, including User32.dll, Gdi32.dll, Advapi32.dll, and Kernel32.dll. Yup… That's right. The file

named Kernel32.dll is not the kernel. Instead, along with User32.dll, Gdi32.dll, and

Advapi32.dll, it runs in user mode and provides an API to various user-mode applications for

reading files, writing files, and performing other actions. It's called Kernel32.dll because it

provides an API for user-mode programs to send requests to the kernel, but these requests

don't go directly to the kernel. Instead, they must pass through Ntdll.dll first.

We should note that Windows supports other groups of subsystem DLLs beyond the Win32 set.

Since its inception, Windows NT and its successors include subsystems for programs written for

OS/2 (a venerable operating system championed by IBM years ago) and POSIX (a generic

UNIX-like environment). The vast majority of Windows programs rely solely on the Win32 APIs,

but these other subsystems are available to run older applications or for new programs to be

built in those other programming environments.

So, most user processes make function calls directly into the Win32 DLLs. Each function call

inside of Win32 can, in turn, do one of three things [19]. First, as shown in element A of Figure

8.22, for relatively simple requests that don't require kernel-level interaction with hardware or

other processes, the Win32 function could just handle the request and send a response. An

example function of this type is the GetCurrentProcessId function, which lets a process get its

own process ID number from user space. No deeper level calls are required.

Figure 8.22. Three ways the Win32 DLLs handle requests from user-

mode processes.

Another possibility for handling a function call from a user-mode application involves the Win32

DLL needing information from a very special user-mode process that is responsible for keeping

the Win32 subsystem running. This type of interaction is illustrated as element B of Figure 8.22.

The Csrss.exe process, which is an abbreviation for Client/Server Run-Time Subsystem, keeps

the Win32 subsystem operating by invoking user processes and maintaining the state

associated with each process. A user-mode process can ask Csrss.exe for information about

itself or other processes without calling the kernel.

Pagina 2 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

The third possibility for a Win32 function call is the most interesting for our purposes, and is

shown as element C in Figure 8.22. The user-mode application could ask a Win32 DLL to take

some action that requires invoking a kernel function. For example, the user-mode process could

call the ReadFile or WriteFile function calls in a Win32 DLL. To interact with the hardware as

required by these functions, we are clearly going to need to take a step downward toward the

kernel. The highly documented Win32 DLL that developers utilize will map the ReadFile and

WriteFile function calls into another piece of code, called Ntdll.dll, which is an internal and

relatively undocumented API. The purpose of Ntdll.dll is to take the highly documented function

calls of the Win32 API (like ReadFile and WriteFile), and convert them into the relatively

obscure underlying function calls understood by the kernel (called NtReadFile and NtWriteFile,

respectively).

Once the Ntdll.dll code maps the function calls, we need to make a transition from user mode to

kernel mode, jumping through a call gate into the kernel. Using a mechanism we'll explore

shortly, the Ntdll.dll code invokes kernel-level functionality called the Executive. The Executive,

named for its high and mighty capabilities, serves numerous purposes, including making kernel

function calls available to user mode, making various kernel-level data structures available to

other kernel-level processing, and managing certain kernel state and global variables. The

Executive is implemented inside of a critical file called Ntoskrnl.exe. When the Executive is

invoked, it determines which piece of underlying kernel code is needed to handle the request,

such as reading or writing a file. After determining which piece of kernel code is required to

handle the request, the Executive transitions execution to another component of Ntoskrnl.exe.

This bottom piece of Ntoskrnl.exe is called the kernel, even though the Executive itself runs in

kernel mode and is implemented in Ntoskrnl.exe as well.

The code in the kernel now needs to interact with the hardware. In our ReadFile and WriteFile

example, the kernel needs to interact with the hard drive. To accomplish this task, the kernel

itself relies on yet another level of code, called the Hardware Abstraction Layer (HAL).

Implemented in a file called HAL.dll, the purpose of this component is to make various different

vendor hardware products look consistent to the kernel itself. By sending messages to HAL, the

kernel can read from or write to the file. So, we've traversed the layers of this onion that is the

Windows operating system: a user program can make function calls into the documented Win32

DLL, which calls Ntdll.dll, which invokes the Executive, which calls the kernel, which asks the

HAL to do something, which interacts with the physical hardware. In the end, a user-mode

process can read from or write to a file, or perform other interactions with the hardware.

There's one crucial component of this process that we need to zoom in on: the transition from

user mode to kernel mode, that all-important and nifty call gate concept. How does Ntdll.dll

make calls into the kernel, invoking the Executive? In a sense, we're doing the equivalent of

making a system call in Linux. However, Windows documentation doesn't refer to this concept

using the words system call. Instead, the Windows terminology for this transition is referred to

as system service dispatching, a much more high-brow sounding phrase than the simple system

call wording of the Linux world. The idea, however, is very much the same, as shown in Figure

8.23, which is really a zoomed-in view of our earlier Figure 8.22.

Figure 8.23. System service dispatching in Windows.

Pagina 3 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

As with Linux, the transition between user mode and kernel mode occurs through the use of a

CPU interrupt signal. For Windows, Ntdll.dll triggers interrupt number 0x2E on x86-compatible

processors to invoke this transition. At this interrupt, a piece of code inside the Executive,

called the system service dispatcher, needs to determine which kind of system service call is

required of the kernel to invoke the appropriate underlying kernel code. Based on the

information provided in the registers of the CPU at the time of the interrupt, the system service

dispatcher looks in a table called the system service dispatch table. This table indicates where

the appropriate system service code to handle the request is located in kernel memory. Sounds

familiar, right? In essence, the system service dispatch table works a lot like the system call

table in Linux. Execution flow is then transitioned to the appropriate kernel code. A good deal of

this kernel code for implementing various system service calls is loaded into the kernel from a

file called Win32k.sys, which implements much of the kernel mode functionality needed to

service the user-mode Win32 API. In fact, about 200 kernel function calls are implemented in

Ntoskrnl.exe itself, but more than 500 more function calls are loaded into the kernel during

system boot from Win32k.sys. The Ntoskrnl.exe and Win32k.sys functions implement the

required system service calls (e.g., reading or writing a file) by relying on even deeper code

located in the HAL. All of the kernel data structures and code live at memory addresses starting

at 0x80000000 up to 0xC0000000.

So, we've got a high-level view of how Windows user mode and kernel mode fit together. Now,

let's see it all in action on a live system. If you'd like to follow along at home, boot your

Windows 2000, XP, or 2003 system and log on to the box. As we explore the Windows kernel,

it's important to note that Windows includes fewer built in features for looking at the kernel

than does Linux. In Linux, all of the tools that we used as kernel archaeologists to look at

artifacts were built into the operating system. With a default Windows installation, there aren't

nearly as many good built-in tools for kernel analysis. Some people might feel that less

information about the bowels of a running Windows kernel helps improve security, as the bad

guys cannot as easily find or alter sensitive data structures in the kernel. In essence, this is a

security-through-obscurity argument. Unfortunately, security through obscurity isn't a huge

hurdle for the bad guys. It might slow them down a bit as they reverse-engineer the system,

but it also could lull system administrators into a false sense of the security level they've really

achieved. Many gifted reverse engineers (both noble researchers and evil bad guys) are quite

adept, and have created all kinds of tools for peering inside the Windows kernel. Just because

the operating system doesn't ship with such tools built in, good guys and bad guys alike

commonly rely on various tools to analyze the kernel as they develop software on Windows.

We'll use some of these tools ourselves shortly.

Pagina 4 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

To analyze Windows kernel artifacts, we'll use some built-in tools and a couple of additional

freely downloadable tools on our machines. I'll let you know when we get to the point where

you need to install extra software to follow along. Initially, we'll just use the built-in tools that

Microsoft provides with Windows.

First, take a look at running processes on your machine. Hit the Ctrl+Alt+Del keys, select Task

Manager, and click the Processes tab, as I have done in Figure 8.24. Look at the top few

processes, which are all associated with the kernel.

Figure 8.24. The Task Manager Process tab shows running processes.

The first process you see in your listing is the System Idle Process with a process ID (PID) of

zero. The System Idle Process, truth be told, isn't really a process at all. Instead, it's a place

where the kernel accounts for CPU time that isn't being used by real processes to do work. Next

in the list, we see the System process, which always has a PID of 8. Now, this one is very

important, as it is used to aggregate information about all of the running threads in kernel

mode, whether they are in Ntoskrnl.exe, Win32k.sys, or other kernel-mode code.

Moving down the list, we see the process called Smss.exe, also known as the Session Manager.

This crucial item is the first user-mode process that runs on the machine, activated by the

kernel during system boot. In a sense, it is analogous to the UNIX init daemon, as the Session

Manager's job is to prepare user mode and to activate other user-mode processes while the

machine starts up.

Smss.exe, in turn, invokes Csrss.exe (the process that manages the Win32 subsystem) and

Winlogon.exe (which lets users log on to the machine). Smss.exe, Csrss.exe, and Winlogon.exe,

as well as everything invoked after them, run in user mode. However, although they all run in

user mode, all of these processes do invoke numerous system service calls inside the kernel as

they run, especially Csrss.exe.

Pagina 5 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Next, let's get a feel for how often the system runs in kernel mode by looking at the

performance view of the Windows Task Manager. Within the Task Manager, click the

Performance tab, as I have done in Figure 8.25. Go to the View menu and select Show Kernel

Times. The CPU Usage History screen will now display the amount of CPU time devoted to user-

mode processes in green. The red line indicates how much CPU time is spent running in kernel

mode. Move your mouse around and run an application or two to see how the relative amount

of time in user and kernel mode changes as you perform various actions on your system. The

Performance view in Windows Task Manager also shows you the number of kilobytes of memory

the kernel is using.

Figure 8.25. The Task Manager Performance tab separates user-mode

and kernel mode performance data.

So, the kernel is indeed there, and it's burning up some CPU cycles. So far, we've just looked at

the kernel usage of the CPU aggregated into a big amorphous blob of kernel time, without

regard to which processes are making demands on the kernel, causing it to burn that kernel

time. Using the Performance tool built into Windows, we can separate the amount of kernel

time burned by individual processes. To accomplish this, bring up the Performance tool, by

going to Start Control Panel Administrative Tools Performance.

Inside the Performance tool, click Add (which looks like a plus "+" sign). In the middle of the

screen, in the pull-down menu labeled "Performance Object:," select Process. Note that we

want to select Process and not Processor. The Process view will let us look at the CPU activity of

individual processes, whereas the Processor view lumps everything together. Now, in the

"Select counters from list" box, click %Privileged Time and, while holding down the Ctrl key,

also select %User Time. Finally, click a process to analyze. We'll start out by looking at the

System process. I've illustrated the settings for this view in Figure 8.26.

Pagina 6 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Figure 8.26. Configuring Performance Monitor to look at individual

processes, like the System process.

Now, click Add and then Close. The resulting graph is pretty tiny, so you might want to zoom in.

To do so, right-click on the graph, select Properties, go to the Graph tab, and enter a Vertical

Scale maximum of 5, instead of 100. Now, you'll see the relative amount of CPU time spent for

that process on Privileged Time (which means that it's running in kernel mode) and User Time

(which is, of course, user mode). To get some action going on the system, run your favorite

word processor or a browser, which will burn some CPU cycles and cause system services

dispatching to occur. You'll notice, as you might expect, that the System process spends all of

its time in kernel mode. As we discussed earlier, that's because the System process is used to

aggregate the time for all threads running in the kernel.

After looking at the System process, reconfigure the Performance tool to look at the privileged

(i.e., kernel) time and user time associated with the Csrss and Explorer processes. Use the X

icon to remove the previous graphs, and the + icon to add new ones. In Figure 8.27, I've

shown my Performance tool views of the System, Csrss, and Explorer processes on my box.

Figure 8.27. Performance tool view of privileged (kernel) and user
times for the System, Csrss, and Explorer processes.

Select the Plus sign.

Select the "Process" Performance object.

Select the %Privileged Time and the %User Time.

Select the System process.

Pagina 7 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Note that the Csrss.exe process spends the vast majority of its time in kernel mode, but every

once in a while burns a little time in user mode. Although a user-mode process, Csrss.exe

invokes kernel functionality through system service dispatching a lot. The Explorer process, as

you might recall from Chapter 7, implements the Windows GUI, drawing all of those pretty

pictures on your screen. The Explorer's performance view includes a fair amount of time in both

user mode and kernel mode. It's important to note that Explorer really is a full user-mode

process. However, the Performance tool displays the amount of kernel time that is spent by the

kernel handling system service calls on behalf of the Explorer process. Therefore, we can see its

normal user-mode time, as well as the time it takes the kernel to handle the requests of the

Explorer process.

As we discussed earlier, there are a limited number of tools built into Windows for looking at

kernel artifacts. We just looked at a few of them, but to get deeper into the kernel's activities,

we need to install some additional tools on our Windows boxes. If you want to continue to

follow along on our kernel adventure on your own system, please get a copy of the Process

Explorer tool, written by Mark Russinovich, freely available at

www.sysinternals.com/ntw2k/freeware/procexp.shtml. Additionally, snag yourself a copy of the

no-cost Windows Dependency Walker tool, created by Steve P. Miller, at

www.dependencywalker.com/. To follow along, go ahead and download each tool and install

them by simply unzipping their contents into a directory on your hard drive. These tools are for

reading information only and not altering it, so they shouldn't have a negative impact on your

system.

After installing these tools, double-click Procexp.exe, or invoke it from the command line by just

typing "procexp.exe" at a prompt in a directory where the tool resides. Process Explorer shows

every running process on the machine, giving details about its status and the DLLs it relies on.

It also displays the process hierarchy, showing the relationship of processes to each other by

indicating the parent process, grandparent process, and so on for all running processes on the

machine.

Based on the indentations you can see in Figure 8.28, the System process (which contains the

various kernel threads) started the Smss.exe process (which, as we've discussed, is the first

user-mode process that runs). Smss.exe, in turn, invoked the Csrss.exe and Winlogon.exe

Pagina 8 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

processes. I can look for each DLL used by these processes, including Gdi32.dll, Ntdll.dll, and

others. By right-clicking a process and selecting Properties, I can even view the kernel time,

security parameters, and environment variables associated with each running process.

Figure 8.28. Using Process Explorer to look at kernel and user time, as
well as DLLs loaded by every running process.

Process Explorer gets us pretty deep into the guts of the system, looking at the elaborate dance

of running processes. However, I'd like to go deeper, getting a glimpse of the function calls

made between various components of the system. With that information, we could trace

requests through the onion-like layers of Windows. Unlike Process Explorer, which showed us

running processes, the Dependency Walker tool opens executable files and DLLs and

determines the function calls and other DLLs that glue different EXEs and DLLs together. With

Dependency Walker, we're not looking at real-live running processes. Instead, we're checking

out the relationships between the function calls and code stored in different executable and DLL

files on our systems. One executable might call a given DLL, which, in turn, calls another DLL,

which relies on yet other DLLs, right on down into the kernel. This information is tremendously

useful in seeing how the kernel operates, as we can trace the relationships of user-mode

processes, the various user-mode DLLs, Ntdll.dll, and the kernel itself. If you are following

along, go ahead and run Dependency Walker by double-clicking it, or activating it from a

command prompt by typing depends.exe in the directory where you unzipped the tool.

After invoking Dependency Walker, we need to select some application for which to analyze

dependencies. Let's start out by opening up the simple editor Notepad, which has been built

into Windows for years. On the File menu, select Open, and browse to your C:\Winnt\System32

directory (on Windows XP, you should look at C:\Windows\System32). Click Notepad.exe and

then Open. You should see the view shown in Figure 8.29, which tells us that the Notepad

executable depends on the Comdlg32, Shell32, Msvcrt, Advapi32, Kernel32, Gdi32, User32, and

Winspool DLLs. That's quite a list of code, for little old Notepad!

Figure 8.29. Dependency Walker shows the dependencies of

Notepad.exe.

Pagina 9 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Next, expand the Kernel32.dll item under Notepad.exe. As I've shown in Figure 8.29, we can

see that Kernel32.dll depends on Ntdll.dll. Additionally, while Kernel32.dll is selected, the upper

right-hand component of the window shows what function calls the parent (Notepad.exe) relies

on from the selected DLL (Kernel32.dll). The column is labeled PI which stands for Parent

Import. In particular, check out how Notepad.exe uses the WriteFile function provided by

Kernel32.dll. In the middle of the screen, we can see all of the functions that Kernel32.dll offers

up, whether Notepad.exe uses them or not. This primary column is titled E, for Export. The

bottom of the window shows a laundry list of all DLLs that Notepad.exe relies on, without the

nifty hierarchical relationships displayed at the top.

Now, let's take a step deeper down this rabbit hole. Under Kernel32.dll, select Ntdll.dll. Now, as

illustrated in Figure 8.30, we can see the NtWriteFile function that Kernel32.dll imports from

Ntdll.dll. The linkage between the higher level WriteFile and lower level NtWriteFile is not

displayed, however, as such intricacies could only be determined by processing the code inside

of Ntdll.dll, an activity beyond Dependency Walker's capabilities.

Figure 8.30. Looking at Ntdll.dll in Dependency Walker to see

NtWriteFile.

Unfortunately, we cannot jump past Ntdll.dll in Dependency Walker because the transition

between user mode and kernel mode doesn't occur by a traditional function call. Instead, the

system services dispatcher is invoked by a CPU interrupt, something Dependency Walker just

cannot walk across. So, to peek inside of the code that runs in kernel mode, we'll have to open

up the Ntoskrnl.exe file itself, located at C:\Winnt\System32\Ntoskrnl.exe on Windows 2000

and C:\Windows\System32\Ntoskrnl.exe on Windows XP. In Figure 8.31, I've done just that.

Figure 8.31. Looking at the Ntoskrnl.exe program's dependencies, and

the functions it makes available.

Pagina 10 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Here, we can see that the Ntoskrnl.exe file, (i.e., the kernel image on the hard drive itself) is

dependent on HAL.dll, the HAL, and Bootvid.dll, a piece of code used to interface with the video

drivers on the machine. Also, check out how Ntoskrnl.exe exports various functions to its parent

(which as we discussed earlier, is Ntdll.dll). In particular, look at the NtWriteFile function that

the kernel makes available. This is the function that Ntdll.dll will invoke through the system

service dispatcher to write to a file.

At this point, we can go deeper into our kernel analysis by using a free tool that implements

strace functionality for Windows NT, 2000, and XP. As you might recall from our earlier Linux

discussion, strace shows a list of system calls made by a program as it is running. The folks at

Bindview Corporation have released a free Windows version of strace that shows all system

service dispatch calls made into the Windows kernel, available at

http://razor.bindview.com/tools/desc/strace_readme.html. Although this Windows strace tool is

extremely nifty, I caution you about using it. The Windows strace tool could make your system

unstable, so you might want to avoid running it on anything but a test system that you can

easily rebuild if it trashes your system. To give you a feel for how the Windows strace tool

works, I've run it on my own system, displaying the system services invoked by the familiar

Notepad file editor. As you'd expect, the Windows strace tool shows the invocation of the

NTWriteFile function when I save a file using Notepad, as shown in Figure 8.32.

Figure 8.32. Strace on Windows shows the system services called by
Notepad.

Now that we've got some feel for how user-mode code invokes functions inside kernel mode,

there's one final area of the kernel we need to look at: device drivers. In Windows, an

administrator can alter the functionality of the kernel by adding device drivers, which are

chunks of kernel-mode code. Device drivers can add or even replace various system service

Pagina 11 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

calls by altering the system service dispatch table or other kernel structures. In this regard,

device drivers operate rather like Linux kernel modules. On Windows 2000, to view the installed

device drivers, open your Control Panel, and select Administrative Tools. Now, open up

Computer Management System Information Software Environment Drivers, to get the

list shown in Figure 8.33. On Windows XP, select Start Control Panel Administrative Tools

 Computer Management Device Manager for a list of all devices and their drivers.

Figure 8.33. Looking at installed Windows device drivers on Windows
2000.

These installed device drivers include all kinds of goodies, such as code for extending my

networking options with Internet Protocol Security (IPSec) and file system drivers so my system

can read and write its hard drive. Each of these device drivers operates in kernel mode, and can

access various kernel data structures, including, potentially, the system service dispatch table.

Methods for Manipulating the Windows Kernel

So, the Windows kernel and its associated APIs make up a complex beast, but they function

appropriately for millions of users around the globe. Can you imagine anyone wanting to mess

with such fine-tuned, complex harmonies? Well, of course, computer attackers want to

manipulate the kernel to create kernel-mode RootKits. As you might expect with such

complexity, there are numerous options for the bad guys in compromising a Windows kernel.

Several kernel-mode RootKit projects are up and running on the Internet, but the most

information-rich and prolific site dedicated to Windows RootKits is the www.rootkit.com Web

site. Created and maintained by Greg Hoglund, www.rootkit.com is a virtual watering hole for

developers of Windows RootKits to share code and ideas for improving their wares. The site

features several discussion lists for different Windows RootKits, and offers up a few choice

specimens for free download, including RootKits named Hacker Defender, HE4Hook, NT Rootkit,

and GINA Trojan. To download any of the RootKits offered at www.rootkit.com, you'll need to

register with the site for a free account. After receiving a user ID and password during the

online registration process, anyone on the Internet can download and experiment with the user-

mode and kernel-mode RootKits available at the site.

Interestingly, all five of the different Linux kernel manipulation tricks we discussed earlier in

this chapter have direct analogies in the world of the Windows kernel. Namely, the bad guys

could employ evil device drivers, alter a running kernel in memory, overwrite the kernel image

on the hard drive, deploy a kernel on a virtual system to trick users, and try to run user-mode

code at the kernel level. Now, each of these five elements on Windows machines is a possible

avenue of attack, but the first two (employing evil device drivers and altering a running kernel

in memory) are by far the most widely used. The other options are possible attack vectors,

Pagina 12 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

which could become more popular in the future. Let's look at each of these attack types in more

detail.

Evil Device Drivers

One of the first and most popular techniques for manipulating the Windows kernel involves

inserting a malicious device driver into the system, which patches the kernel to alter system

service call handling. Just as bad guys exploit Linux kernel modules to load malware inside the

Linux kernel, they utilize very similar tricks on Windows. By loading a specialized device driver

that alters specific system service calls associated with listing running processes, showing files

and directories, and identifying TCP and UDP port usage, an attacker can very effectively alter

the kernel to hide a backdoor on the machine, as illustrated in Figure 8.34.

Figure 8.34. Using a device driver to manipulate the Windows kernel.

So, an attacker can inject an evil device driver into the kernel to alter existing functionality and

hide backdoor processes. Windows supports digital signatures on device drivers so that an

administrator can verify the integrity of all drivers while they are first installed on the machine.

However, with administrator privileges on the target machine, an attacker can easily install a

device driver even without an appropriate signature. The system will warn the attacker that the

device driver isn't signed by a trusted source, but the attacker can easily accept the warning

and apply the malware driver.

However, once the device driver containing the attacker's code is inserted into the kernel, how

does the attacker coax the Windows kernel into running the attacker's own code, instead of

existing Windows kernel code for system service calls? Given the complexity of the Windows

kernel, a huge variety of options are available, three of which are illustrated as elements A, B,

and C of Figure 8.34. Each of these elements is really a form of API hooking, but this time

inside the Windows kernel itself.

In element A, the attacker uses an evil device driver to simply overwrite existing kernel

functionality, replacing the code inside the kernel with new code that will hide the attacker's

actions by changing system service handling functionality. Alternatively, in element B, the

attacker uses a device driver that implements various kernel functions, and then alters the

system service dispatch table so that it points to the attacker's code instead of the existing

Pagina 13 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

kernel functionality. Finally, an attacker could employ a technique called interrupt hooking to

modify how the kernel handles CPU interrupts, as shown in element C. By changing the table

associated with interrupt handling in the kernel, the attacker could redirect calls to the system

service dispatcher to the attacker's own code, instead of the built-in kernel functionality. Using

interrupt hooking, the attacker could grab all calls to the system service dispatcher, and pick

and choose which functions to handle with normal kernel processing, and which to deal with

using the bad guy's code.

For an example of a popular kernel-mode RootKit for Windows that mixes elements A and B

from Figure 8.34, consider the Slanret/Krei tool, which is sometimes referred to as the

Ierk8243.sys RootKit based on an embedded string and file name associated with the tool.

Originally discovered in early 2003 on Windows 2000 and XP machines, Slanret/Krei actually

consists of two pieces: the Slanret device driver and a remote access backdoor tool called Krei

[20]. With administrator privileges, an attacker first loads the Slanret device driver onto the

victim machine. In a mere 7 kilobytes of code, Slanret modifies the kernel so that it will lie

about an attacker's hidden processes, files, registry keys, and TCP and UDP port numbers for

any user-mode application that asks about them. What does Slanret hide in particular? It hides

Krei, of course. After installing the device driver, the attacker loads the Krei backdoor, a 27-

kilobyte user-mode application that listens on TCP port 449 and grants the attacker remote

backdoor access to the victim machine. Of course, Slanret and Krei work hand in hand, in that

Slanret masks all of Krei's actions.

Slanret is a pretty nasty kernel-mode RootKit, but its developers overlooked one important

aspect. The Slanret device driver doesn't hide itself in the list of device drivers. When installed,

Slanret will show up in the device driver list under the name IPSEC Helper Services or Virtual

Memory Manager. These names sound like reasonable drivers, perhaps fooling a user or

administrator into thinking that this driver somehow supports IPSec or the virtual memory

system of the machine [21]. Some variations of Slanret call their device driver Ierk8243.sys, a

more confusing but less subtle name.

An alternative strain of the Slanret tool uses the same basic code, but listens on a different port

and uses a different driver name. The so-called BackDoor-ALI RootKit borrows almost all of

Slanret/Krei, but listens on TCP port 961 and uses a driver called P2.SYS PentiumII Processor

Driver [22]. With that name, it sounds like a pretty reasonable driver, right? Actually, it's a

nasty kernel-mode RootKit.

Although Slanret doesn't do a good job of hiding its own device driver, a more thorough kernel-

mode RootKit device driver could certainly hide itself. By using API hooking to grab the system

services used by the machine to display active drivers, an attacker could eliminate this piece of

evidence to create an even stealthier tool. Be on the lookout for such nasties in the very near

future.

Altering a Running Kernel in Memory

Instead of using a device driver, an attacker could directly patch the kernel in the memory of

the victim machine, a technique first described in detail by Greg Hoglund [23]. To understand

Hoglund's technique, as well as the work of those who built on it, we need to look at how

memory is handled in Windows, specifically with regard to the CPU running in Ring 0 and Ring

3. On a Windows machine, the Global Descriptor Table (GDT) contains information about how

memory is divided into various segments, allocated to user programs and the kernel itself. As

we discussed earlier, all memory locations between 0x80000000 and 0xC0000000 are for use

by the kernel, and, under normal circumstances, can't be touched by user-mode processes. The

GDT stores data about how various memory segments are carved up, and the CPU ring that is

required for a program to touch each part of memory. The segments defined by the GDT can

overlap with each other. That is, the same range of memory addresses can simultaneously be in

multiple segments in the GDT. As you'd no doubt expect, the default GDT says that to access

memory locations between 0x80000000 and 0xC0000000, you need to be running in Ring 0.

That's kernel territory.

Pagina 14 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Here's the rub. By using several tricks to alter memory, an attacker can add a new entry to the

GDT, thereby describing a new, attacker-defined segment that maps to a memory range. This

new entry won't overwrite existing GDT entries, but will add another entry that refers to the

same memory range included in other lines of the GDT. Guess what the new entry says. Yup,

the new GDT entry could map out a memory space starting at 0x00000000 and going to

0xFFFFFFFF. On a 32-bit architecture, that's the entire memory space. If you are going to give

yourself access to memory, you might as well go for the whole enchilada. Of course, the new

GDT entry allows someone running in Ring 3 to read from and write to this new overlapping

segment. Bingo! By writing some machine language code that adds an entry to the GDT, the

attacker can read and write kernel memory directly, as illustrated in Figure 8.35.

Figure 8.35. Adding an element to the GDT creates a new segment that
can be accessed from Ring 3.

Hoglund's paper includes code for altering the GDT in this way, and then exploits this technique

to patch the running kernel so that it disables all security checking features of the machine.

When any user tries to access a given object, such as a file or registry key, the SeAccessCheck

function of the kernel verifies that the user has been granted the rights to touch the given

object. By overwriting a mere 4 bytes of the Windows NT kernel in memory, Hoglund's patch

bypasses all security checks associated with accessing objects on the victim machine by

changing the internal kernel function call to SeAccessCheck. Suddenly, by applying this patch,

an attacker can access any file, user account, registry setting, or anything else on the victim

machine, without any pesky interference from the kernel and its security controls. This little 4-

byte patch demonstrates the power of being able to manipulate the running kernel's memory

image. If I can read or write the kernel's memory, I can alter its code to shut off security.

Alternatively, I could intercept system service calls and implement code for all of the fancy

hiding techniques we saw with evil device drivers.

Building on some of the concepts in Hoglund's paper and introducing additional ideas, a

developer named Crazylord released another Windows kernel manipulation paper that delves

deeper into the kernel [24]. Crazylord's technique involves utilizing an object in the Windows

kernel called \Device\PhysicalMemory. As you might expect with that name, this object contains

a representation of all physical memory on the Windows system, both user and kernel memory.

Microsoft included this object inside the Windows kernel so that the kernel could track and help

control memory use on the box. To look at this interesting object, Mark Russinovich released a

free tool called PhysMem, available at www.sysinternals.com, that shows the contents of this

device. Starting with Hoglund's ideas and the PhysMem tool, Crazylord implemented code that

gives an attacker the ability to view, search, and alter any memory on the victim machine,

including kernel memory. In essence, Crazylord's project provides a view of Windows kernel

memory much like /dev/kmem in Linux. And, of course, Crazylord's project allows for

manipulating this memory in much the same way as the read kernel memory (rkm) and write

kernel memory (wkm) functions exploited by Sd and Devik on Linux. So, now we

have /dev/kmem-like attacks on a Windows machine.

Using these techniques, an attacker can manipulate the kernel and change system service

Pagina 15 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

functionality, thereby hiding files, processes, registry keys, and any other aspect of the system

from an administrator. Although Crazylord's article didn't include a RootKit, his

Windows /dev/kmem technique offers a starting point for other attackers to create kernel-mode

RootKits without the use of device drivers.

Building on his earlier techniques, Hoglund released a tool called NT RootKit. Don't be thrown

by the name, however. This tool will run on Windows NT, 2000, and XP. By the time you read

this, a Windows 2003-compatible version might have been released. The NT RootKit includes

several kernel-mode RootKit features, including file, process, and registry key hiding. It can

also perform execution redirection for any user-mode executable process on the machine. Some

versions also include a built-in keystroke logger, which records everything typed at the

keyboard inside a hidden file for the attacker.

Configuration of the NT RootKit couldn't be much easier. Any file, registry key, or process with a

name that starts with _root_ will be automatically hidden. So, the bad guy can just name all of

the malicious stuff loaded on to the victim machine appropriately, and it disappears.

The NT RootKit also implements a form of the cone of silence concept we saw earlier with the

Linux KIS Tool. If a running process has a name that starts with _root_, it is, of course hidden,

but any hidden process is able to see hidden files, processes, and registry keys. Therefore, an

attacker could make a copy of the Windows command shell (Cmd.exe), prepending _root_ to its

name. Whenever _root_cmd.exe is executed, the resulting command shell will not only be

invisible, but it will also have the ability to see any of the hidden items on the machine.

Similarly, a version of the Windows Task Manager (Taskmgr.exe) or the Registry Editor

(Regedit.exe or Regedt32.exe) with _root_ prepended to its name will be able to see hidden

processes and registry keys, respectively.

Patching the Kernel on the Hard Drive

Instead of patching the Windows kernel in memory, an attacker could also alter the kernel

image file on the hard drive, replacing functionality inside of Ntoskrnl.exe with modified

software that provides a backdoor and hides an attacker's presence on the machine. Now, an

attacker cannot alter the Ntoskrnl.exe file by itself, because the integrity of this file is checked

each time the system boots. During the boot process, a program called NTLDR verifies the

integrity of Ntoskrnl.exe before the kernel is loaded into memory. If the Ntoskrnl.exe file has

been altered, the NTLDR program displays a fearsome blue-screen-of-death message, indicating

that the kernel itself is corrupt. The system boot never completes, and both the administrator

and the attacker are unhappy. Believe me, it's extremely disconcerting to have your system tell

you that your kernel is corrupt during a system boot!

To get around this difficulty, the bad guys manipulate both the NTLDR and the Ntoskrnl.exe

files. Using a small patch to overwrite a few machine language instructions inside of NTLDR so

that it skips its integrity check, the attackers can then freely alter Ntoskrnl.exe at will, as

illustrated in Figure 8.36. In Step 1, the modified NTLDR file is copied to memory at the start of

system boot. The NTLDR program had been altered to skip the integrity check of the

Ntoskrnl.exe file. Therefore, in Step 2, the manipulated Ntoskrnl.exe file is loaded into memory,

with all kinds of nasty surprises loaded inside.

Figure 8.36. Modifying NTLDR to skip the Ntoskrnl.exe integrity check,
and then modifying Ntoskrnl.exe.

Pagina 16 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Although this technique hasn't yet been widely used to implement backdoor access and full-

fledged RootKits, several viruses have used the technique over the past few years. In

particular, the Bolzano and FunLove viruses from 1999 altered NTLDR and Ntoskrnl.exe [25].

Both viruses applied a small patch to the kernel file so that the SeAccessCheck security

functionality was disabled, implementing in the kernel file the same basic attack that Hoglund

applied to a running kernel's memory. With the security checking functionality disabled, the

Bolzano and FunLove viruses could access and alter any objects on the infected machine.

Although these viruses targeted just Windows NT and only disabled the SeAccessCheck

function, a complete Windows RootKit could be implemented using similar tactics to alter

system service calls inside Ntoskrnl.exe and Win32k.sys. To date, no mainstream Windows

RootKit has employed such techniques, leaving it relegated to just a handful of rather obscure

viruses for the time being.

Creating a Fake System Using a Virtual Machine

Earlier we saw how an attacker could employ UML to create a virtual Linux machine running on

top of a compromised Linux system. Administrators and users would think they are logging into

the real machine, but are instead logging into a guest operating system built on top of the real

system owned by the attacker. A similar approach could be applied against a Windows

environment as well. To run a virtual Windows machine, an attacker could install any one of

several virtual machine environments that run on Windows, listed in Table 8.4.

One significant disadvantage for the attacker of using any of the tools listed in Table 8.4

involves the complexity and lack of transparency in the virtual machine initialization process on

Table 8.4. Virtual Machine Tools That Could Be Abused to Trick Users

Tool

Name
Commercial/Free

Host Operating Systems

Supported
Location

VMWare Commercial Linux and Windows www.vmware.com

VirtualPC Commercial Windows, MacOS X, and

OS/2

www.connectix.com

Plex86 Free Linux http://plex86.sourceforge.net

Bochs Free Linux, Windows, and MacOS

X

http://bochs.sourceforge.net

Pagina 17 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Windows. Sure, the attacker could break into a Windows machine, install a virtual machine tool,

build a virtual system that mimics the original machine, and then configure the entire mess to

start up appropriately at boot using startup scripts. However, the boot process of the

compromised host operating system and the activation of the virtual machine tool would likely

be noticed by a system administrator. A similar hurdle is faced by the Linux attackers who

employ UML. However, the UML startup script can be disguised so that it doesn't really show

any activity to a user watching the boot process on the screen. Fooling an administrator or user

sitting at the console of a machine that suddenly starts VMWare, VirtualPC, Plex86, or Bochs is

a much more daunting task for the attacker. Each of the virtual machine tools listed in Table

8.4 displays significant amounts of information on the screen as it is activated. Therefore,

although still a possibility, this virtual machine approach is less likely to be used on a Windows

machine than on Linux.

Kernel Mode Windows? Maybe Someday…Soon

Earlier we discussed how an attacker could use the KML project to run in Ring 0 arbitrary

programs designed for user mode, provided that the Linux kernel was built with the appropriate

KML hooks. As of this writing, no one has created a full-fledged kernel-mode Windows tool that

runs user-mode-style programs inside the Windows kernel. However, there is ongoing work

moving in this direction.

In particular, the NT RootKit development team is extending the NT RootKit itself so that it can

run any user-mode program inside the kernel. In particular, they are focused on running the

Cmd.exe command shell from within kernel mode. That way, an attacker can get a shell prompt

that has complete access to any kernel mode data structures, at the same time remaining

hidden to all user-mode processes.

Generalizing such a tool beyond a command shell is an arduous task, as the developer has to

carefully manage memory access inside the kernel to create a kernel-mode Windows tool. A

user-mode program running in kernel mode could easily behave like a bull in a china shop,

accidentally smashing critical data structures, rendering the system unstable or even crashing

it. Still, in time, I expect to see a generalized kernel-mode Windows implementation that acts

as a shield of protection around the bull (i.e., a user-mode program) inside the china shop of

the Windows kernel. The shield doesn't protect the bull, mind you, but is instead designed to

protect the china shop itself from accidental destruction. Of course, for a bad guy to use such a

tool for manipulating the kernel, the shield of protection would need selective holes so the

attacker could alter some aspects of the china shop without bringing the whole thing down.

Stay tuned for more development on this front.

Defending the Windows Kernel

With Windows kernels exposed to similar types of attacks as the Linux kernel, we must carefully

shore up the security of our Windows machines as well. Let's analyze the defenses against

Windows kernel manipulation by stepping through the same three categories we discussed for

Linux kernel mode attacks: prevention, detection, and response.

Prevention

As with most of the malware we've covered in this book, a crucial element of your defensive

plan is to keep the bad guys off of your system by hardening the configuration and applying

patches in a timely manner. Such defenses are just as important on Windows as they are on

UNIX systems. In addition to these incredibly important base recommendations, though, you

might want to consider another class of tools that can help prevent installation of kernel-mode

RootKits: intrusion prevention systems (IPSs).

Frankly, I'm not a big fan of the terminology intrusion prevention system, as that name is so

ambiguous, it could refer to a multitude of products, ranging from firewalls to smart card

authentication tokens and more. However, due to various marketing initiatives, the IPS moniker

Pagina 18 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

has stuck to a class of products that are installed on individual end systems to thwart various

attacks used to break into the box. I don't like the name IPS, but I am a fan of the functionality

offered by these tools. These IPS solutions limit the exposure of your system by locking out

functionality often abused by attackers to obtain superuser privileges on a target system. Think

of an IPS like a little shield surrounding various critical components of your system, watching

and stopping suspicious activity associated with breaking into the box. These activities include

some buffer overflow attacks, various race conditions, and suspicious system service calls.

Cisco's Security Agent (formerly known as Okena Storm Watch), Network Associates' Entercept,

and Watchguard's ServerLock products are all examples of commercial IPS tools that run on a

Windows platform. They offer a variety of protection strategies, but one of the most worthwhile

capabilities of these tools involves limiting the system service calls that various applications can

make on the machine. As you might recall from earlier in this chapter, the free Systrace tool

offers such protection on Linux, FreeBSD, and MacOS X systems. The commercial IPS tools offer

similar capabilities on Windows. By configuring the IPS to limit what system calls a given

program (e.g., a Web server, mail server, or DNS server application) can make, the bad guys

will have a far more difficult time compromising administrator privileges and installing RootKits.

Also, some commercial IPS tools support operating systems besides just Windows. In particular,

the Cisco Security Agent runs on Windows and Solaris. Entercept is available for Windows,

Solaris, and HP-UX. Watchguard focuses on Windows and Solaris systems.

We should note that configuration and maintenance of these IPS tools is no small task in a

production environment. You need to install the tool and carefully configure it so that it

interoperates appropriately with the application mix on a given machine, allowing the

functionality the application needs to run while locking out those functions that aren't required.

In a sense, the tool has to be trained regarding normal activity for the machine so that it can

spot and stop abnormal behavior. However, after configuring the IPS tool to support the given

machine, you've added a significant extra measure of security to the box.

Detection

To detect a kernel-mode RootKit on Windows, many antivirus tools include signatures for

dozens of kernel manipulating tools, such as Slanret and the NT RootKit. When an antivirus tool

spots a kernel-mode RootKit on the hard drive by matching the contents of the file to one of its

signatures, it will quarantine the file so that it cannot be executed and installed. Therefore, a

widely deployed and up-to-date antivirus infrastructure, as we first discussed in Chapter 2,

supports both the prevention and detection of Windows kernel-mode RootKits.

These antivirus signatures work best before the kernel modifying attack tool is installed, so

proactive deployment of antivirus tools is now more important than ever. After the kernel-mode

RootKit is installed, the antivirus tool has less of a chance to detect it, because the hiding

capabilities of the RootKit could help mask it from the antivirus program. However, many

kernel-mode RootKits on Windows can be spotted by an antivirus tool even after the RootKit is

installed, due to holes in the RootKit's hiding mechanisms. For example, Slanret leaves its

device driver name exposed, a telltale sign that can be detected by an antivirus tool even after

the kernel manipulation is applied.

Although antivirus solutions offer a significant level of protection from these forms of malware,

you should also consider deploying a file integrity checking tool, such as the commercial

Tripwire, GFI LANguard System Integrity Monitor, and Ionx Data Sentinel tools. As we

discussed in Chapter 7, each of these tools can spot file changes made by a kernel-mode

RootKit, if the developer or attacker utilizing the RootKit forgets to disguise such changes. As

we noted in the Linux kernel-mode RootKit defenses, it's quite common for attackers to fail to

hide all of their file changes with a kernel-mode RootKit. Therefore, looking for these changes

with a file integrity checking tool is a sound strategy.

Response

Pagina 19 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

When responding to an attack that employs a kernel-mode RootKit on your Windows machine,

make sure you bring a CD-ROM with a fresh copy of your antivirus tool installation and the

latest signatures. Many Windows antivirus tools can detect and then uninstall various kernel-

mode RootKits, and having this capability in the field for incident response is invaluable. Just

install the antivirus program on the victim machine, keep your fingers crossed that it has a

signature to find the already-installed RootKit, and then tell the antivirus tool to remove the

offending malware.

If the antivirus tool cannot find or remove the malware, you'll need to perform a more detailed

analysis of the system without relying on the embedded kernel. Again, the FIRE and Knoppix

bootable Linux CD-ROMs come in handy. "How can I use a Linux CD-ROM to analyze my

Windows system?" you might ask. Well, although FIRE and Knoppix are bootable Linux images,

they include a variety of tools for looking at Windows disk partitions. So, to analyze the system

in more detail, you'd configure the system to boot from FIRE or Knoppix, thereby starting a

Linux environment. Then, you'd run various Linux tools inside of FIRE or Knoppix to analyze the

Windows partition of your machine. FIRE, my favorite tool for performing such analyses,

includes a variety of items for analyzing a Windows hard drive, shown in Table 8.5.

Currently, a bootable Linux CD-ROM is the best way to go, as there aren't any solid bootable

forensics CD-ROM images of Windows publicly available at the time of this writing. Microsoft's

licensing for Windows prohibits people from creating such a Windows distribution, developing a

CD-ROM image of it, and making it available for download on the Internet. Doing that, someone

would in essence be giving away Windows, certainly a no-no from a license perspective.

Therefore, in our incident-handling operations, we utilize a Linux CD-ROM like FIRE with its

built-in tools to support incident handling on our Windows machines.

Armed with these tools on the handy, free FIRE CD-ROM, you'll be able to conduct solid

searches of your registry and file system to conduct a detailed forensics analysis of the

machine. This book doesn't cover forensics analysis in detail, but I recommend that you grab a

copy of Computer Forensics: Incident Response Essentials by Warren Kruse and Jay Heiser for

an introduction to the craft of computer forensics, or Incident Response by Chris Prosise and

Keven Mandia for more details on forensics investigations.

Table 8.5. FIRE Tools for Analyzing a Windows CD-ROM

Tool Name Description

F-prot A free demo version of the commercial F-prot virus scanner from FRISK

Software International. This version can search for Windows and Linux

malware, including a variety of kernel-mode RootKits.

Editreg A Linux command-line tool for searching and altering the registry on a

Windows partition.

The Sleuth Kit

(formerly called

TASK)

A Linux tool for forensics analysis of hard drive images, including various

UNIX drive formats, but also Windows FAT and NTFS partitions.

 < Day Day Up >

Pagina 20 di 20The Windows Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

