

 < Day Day Up >

The Linux Kernel

Way back in the heady days of 1991, Linus Torvalds started the project that created the Linux
kernel. Today, Torvalds still heads the team that maintains and updates the kernel. Given the
Herculean efforts of Torvalds and his team, many people refer to the entire operating system as
Linux. However, this terminology, although convenient, is imprecise. If you want to be very
particular, the term Linux really refers to just the kernel itself, the component of the operating
system Torvalds and team crafted and currently maintain.

The rest of the operating system consists of a multitude of different open-source projects,
developed by a variety of different groups and collected together in various distributions. For
example, the folks over at the GNU Project created the common C language compiler included
with most Linux distributions, the GNU C Compiler (gcc). GNU is pronounced "guh-NEW" and is
a recursive acronym that stands for GNU's Not UNIX. The GNU project also created a lot of
other programs integral to the operating system, including many of the commands utilized
every day by administrators and users [5]. Beyond GNU, the GUI-based window system used in
most Linux distributions was created by the XFree86 project [6]. Also, there is code from many
hundreds of different development teams floating under what we sometimes sloppily refer to as
merely Linux. Sure, the Linux kernel is the software that controls and coordinates all of these
different parts of the operating system. However, Linux is really just the kernel itself. For this
reason, some people refer to Linux-based operating systems as GNU/Linux, a nod to the GNU
project and its creation of numerous nonkernel components of the operating system [7].

So, at the heart of a GNU/Linux system, we find the Linux kernel, a very juicy target for the bad
guys. The Linux kernel is really just a large piece of complex code that includes a huge number
of features running in Ring 0 on x86 hardware. Before we analyze how bad guys attack this
target, let's look at the Linux kernel in a little more detail. In the next section, we'll go on a
brief adventure through the Linux kernel.

Adventures in the Linux Kernel

All your life has been spent in pursuit of archeological relics. Inside the Ark are

treasures beyond your wildest aspirations.

—Dialogue from the movie Raiders of the Lost Ark, 1981

For our Linux kernel adventure, please feel free to boot up your own Linux machine and follow
along with our discussion by typing commands on your own box. Or, if you don't like hands-on
analysis, you can simply read this section and tuck the ideas away for some other time. Our
goal here is to demystify the kernel and explore some of its fundamental structures so that we
can later understand how attackers manipulate them. In a sense, we'll be acting like
archaeologists on a dig of our system for juicy tidbits associated with the kernel. Just as an
archaeologist analyzes artifacts left over from ancient civilizations to determine facts about their
culture and activities, so too will we be analyzing artifacts created by and associated with our
kernel to get a feel for its activities. When you boot a Linux system and log in to it, you are
typically staring at a GUI or terminal that exists in user mode. For our adventure, we'd like to
peer inside the kernel to see what it's up to. So, how can our user-mode processes get
information about the kernel? Fortunately, Linux offers an amazingly simple and intuitive way to
view various kernel-mode data structures so we can see what's going on underneath the
sheets.

On most Linux systems, the kernel creates a very special directory called /proc, which is
pronounced "slash proc." Unlike most directories on the Linux file system, /proc isn't really a set
of bits on your hard drive. It's virtual, living only in memory, appearing nowhere on your disk.
The kernel creates /proc as a nifty abstraction of itself so that administrators and running

Pagina 1 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

programs can view the kernel's status and other aspects of the running system. In other
words, /proc is the kernel's elegant way of giving you a portal to view the innards of your
operating system. To make viewing these data structures easy, this portal appears as a piece of
your file system, with virtual directories and files that contain vital statistics about your
machine.

But /proc is more than a mere portal for you to peek into. Indeed, a lot of commands that you
run on a Linux system just grab data from /proc and format it nicely for you. For example,
when you run the netstat command to get a list of listening TCP and UDP ports, the command

just grabs data from the directory /proc/net, where information about the network status is
made available to all commands running on the box. In fact, you can think of netstat and
many other commands as merely nice user interfaces that gather information from /proc and
format it for your viewing pleasure.

Most of /proc is read only. However, some parts of it can be written to. Writing to various select
places in the /proc directory can be used to alter the configuration of the kernel in real time. For
example, by changing the value of some of the settings inside of /proc/net, an administrator
can configure the machine to forward packets (making it behave like a simple router) or adjust
its firewall rules. Typically, these changes are made with a configuration tool that tweaks stuff
inside of /proc. However, they can be applied to a running kernel more directly by editing some
of the values of /proc.

So, /proc is very powerful. To get a better feel for its capabilities, let's take a look inside
of /proc. Log in to your machine and use the cd /proc command to change directories

into /proc. Note that on most Linux systems, we don't even need root-level access to look
at /proc, so you can log in with any user ID you choose. You won't be able to see everything if
you are a nonroot user, but you'll still be able to get a solid idea of the kernel and its status. As
we explore /proc, I advise you to just look around, using the cd, ls, and less commands,

which only let you view items and not change them. The cd command is used to change

directories, ls shows a directory listing, and less displays the contents of a file. Hit the q key
to get out of less when you are finished viewing a file. I advise you not to change anything
in /proc, as such alterations could make your system unstable. If you just use cd, ls, and less,
you'll be safe, as these commands only let you navigate and view the contents of directories
and files, without altering any data. Once inside /proc, run the ls command to get a listing of

the /proc virtual directory, as I've done in Figure 8.3.

Figure 8.3. Peering inside /proc to look at kernel information.

In /proc, a bunch of directories have the names of various integers, starting at 1 and
increasing. These directories contain information about each running user-mode process on the
machine, with the directory name being set to the process ID number (e.g., 1, 1012, 1147,
etc.). You can change into one of these directories, look at components of the process using the
ls command, and use the less command to view various details of any running user-mode

process on the system. In a sense, /proc lets you look into the soul of each running user-mode
process. We can view the command-line invocation that was typed to start the process
(cmdline), the process's current working directory (cwd), its environment variables (environ),

Pagina 2 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

an image of the binary executable (exe), and other elements of the process. In Figure 8.4, I've
changed into the directory of process ID number 1 which is the init daemon, the master user-
mode process that started all other user-mode processes on my machine during system boot.
Init always gets assigned a process ID of 1 because it's the first user-mode process to exist on
the box, created by the kernel at boot time. I ran the ls command to view various elements of

the init daemon process. To view many of these elements, I need root privileges on the box.
However, I can view the status of the process by running the command less status. The
status shows information about the name, process ID, user ID, and virtual memory associated
with the running process.

Figure 8.4. Looking inside a process ID in /proc to view its status.

So, looking inside the soul of running processes can be fun and informative. It sure is nice of
the kernel to create this detailed view of all running processes. However, we're here to look at
the kernel itself, not user-mode processes. So, let's go back into /proc and look at the kernel-
specific information presented there. Inside of /proc, the kernel provides a variety of useful
tidbits about itself, including those files described in Table 8.1.

Table 8.1. A Sampling of Interesting Components of /proc

File or

Directory
Purpose

/proc/cpuinfo This file contains information about the system's CPU, including its speed,
cache size, and other parameters.

/proc/devices This file contains a list of various devices on the machine, such as hard
drives and terminals.

/proc/kmsg This file holds log messages from the kernel, which can be read using the
dmesg command.

/proc/ksyms This file includes a list of all variables and functions that are exported via
loadable kernel modules on the machine.

/proc/modules This extremely important file holds a list of loadable kernel modules that
have been inserted into the kernel to extend or alter its base functionality.

/proc/net/ This directory contains information about the current network configuration
and status of the machine.

/proc/stat This file includes statistics about the kernel itself, such as data about the
CPU, virtual memory, and hard drive usage.

/proc/sys/ This directory includes a variety of subdirectories and files that show kernel
variables. These variables can be used to view or even tweak the
configuration of the kernel.

/proc/version This file indicates the version of the kernel that is currently running on the
machine.

Pagina 3 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Table 8.1 gives only a sampling of some of the more important elements included in /proc. Feel
free to explore these items, as well as others in your /proc directory. For each of these files or
directories, you can safely use the cd and less commands to view their contents on your

machine.

Inside of /proc, the loadable kernel module information in /proc /ksyms and /proc/modules is of
particular interest, because loadable kernel modules allow for the extension of the kernel. By
altering the kernel so that it can support new features, loadable kernel modules let Linux more
easily adapt to new hardware types or additional software functionality. For example, you could
add a module that functions like a device driver for some unusual fancy new hard drive that a
stock kernel just doesn't know how to handle. In the olden days of the Linux kernel, you had to
recompile your kernel to extend its abilities. Now, you can just insert additional modules. These
kernel modules are dynamically loaded into a running kernel and don't even require a reboot of
the machine to take effect. What's more, these loadable kernel modules are actually part of the
kernel itself, running in Ring 0, with full access to all kernel code and data. The modules
referred to in the directory /lib /modules are automatically applied to the system during boot.
Additionally, any root-level user can add a loadable kernel module at any time using the insmod
command. These kernel modules are very important, especially as we start to talk about ways
to attack the kernel.

Outside of /proc, another very interesting artifact in your file system associated with the kernel
is /dev/kmem. As you might recall from Chapter 7, the /dev directory contains pointers to
various devices included on your system, such as components of your hard drive, the mouse,
and terminals. As with most things kernel-related, /dev/kmem is special, in that it contains an
image of the running kernel's memory. A related file, /dev/mem, contains an image of all of the
memory of the system, not just kernel memory. The /dev/kmem and /dev/mem files were
constructed by and for the kernel to read and use, not humans, so they're not designed to be
easily read by the human eye. Even if you could directly read them, /dev/kmem and /dev/mem
would be incomprehensible gibberish without the appropriate tools to parse, display, and search
them. However, even though we cannot directly view or edit it under normal
circumstances, /dev/kmem is yet another potential target for kernel-altering bad guys, as we
shall soon see.

Now that we've gotten a high-level tour of what the kernel wants to show us with /proc
and /dev/kmem, let's look at how user-mode processes interact with the kernel. Whenever you
run most programs, the kernel creates a process, which includes memory space for the
program's code and data, as well as threads of execution running through the memory space.
As they run, most processes usually need to tell the kernel to do something. If a process wants
to interact with any of the hardware, such as reading or writing from the hard drive or network
interface, it'll have to somehow interact with the kernel to get such tasks done. Or, if it wants to
run another program to do some other activity, it'll have to ask the kernel to execute that other
program.

How do processes make these requests of the kernel? To interact with the kernel, user-mode
processes rely on a concept termed system calls. The Linux kernel supports a variety of
different system calls to do all kinds of activities, including opening files, reading files, and
executing programs. These system calls represent a transition from user mode to kernel mode,
as the user-mode process asks the kernel to do something by invoking a system call. To get a
feel for which system calls your machine supports, you can look at the header file included in
your system for building software (including the kernel itself) that utilizes system calls. This file
is typically located in /usr/include/sys/syscall.h, /usr/include/bits/syscall,
or /usr/include/asm/unistd.h. Although these locations are pretty common for these files, the
particular location of these files does sometimes vary between different Linux distributions, so
you might have to hunt for them. More than 100 different system calls are supported in a
modern Linux kernel, but a few of the most important ones are shown in Table 8.2. The
maximum number of system calls that can currently be supported by Linux is 256.

Table 8.2. A Small List of Some Important System Calls

Pagina 4 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Now, most user-mode processes don't activate these system calls directly. Instead, the
operating system includes a system library full of code that actually invokes the system call
when it is required. These standard system libraries, which are typically just a group of shared
C language routines, are built into the Linux operating system. So, a running user-mode
process calls a system library to take some action. The system library, in turn, activates a
system call in the kernel. To activate a system call, the system library sends an interrupt to the
CPU, essentially tapping the CPU on the shoulder, telling it that it needs to change to Ring 0
and handle a system call using kernel-mode code. To initiate a system call, the user-mode
program or system library runs a machine-language instruction that triggers CPU interrupt
number 0x80, a hexadecimal number that tells the Linux kernel to use its system call handling
code.

To determine which kernel code to run to handle the system call, the system relies on an
absolutely critical data structure in the kernel known as the system call table. The system call
table is really an array maintained by the kernel that maps individual system call names and
numbers into the corresponding code inside the kernel needed to handle each system call. In
other words, the system call table is just a collection of pointers to various chunks of the kernel
that implement the actual system calls. The system call table is not the same thing as the
syscall.h header file we discussed earlier. That file is just used for compiling software and the
kernel. The system call table is a live data structure stored in kernel memory mapping various
system calls to kernel code. The relationships among user mode processes, system libraries,
the system call table, and the kernel code that implements system calls are illustrated in Figure
8.5.

Figure 8.5. Processes call libraries, which invoke system calls using the

system call table.

System Call Name Function

SYS_open Opens a file

SYS_read Reads a file from the file system

SYS_write Writes to the file system

SYS_execve Executes a program

SYS_setuid Sets the permissions of a running program

SYS_get_kernel_syms Accesses the system table

SYS_query_module Helps insert a loadable kernel module into the kernel

Pagina 5 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

To look at various system calls supported by your machine, you can view the file System.map,
which is located in /boot/System.map, /System.map, or /usr/src/linux/System.map. Whereas
the syscall.h file is just used for compiling software, the System.map file was created when
your kernel was originally built and reflects far more specific information about your kernel. In
particular, the System.map file contains a listing of various symbols used by the kernel. These
symbols are nothing more than a bunch of data structures associated with the kernel, including
global variables, tables, and system calls. Keep in mind that System.map doesn't hold your
current running system call table for the machine; instead, it holds information about the
original system call table that was created when your kernel was originally compiled. Even if
you didn't compile the kernel yourself, this file was created when your kernel was originally
compiled, and it came as part of your installation. The symbol information in System.map is
listed by memory address location and symbol name. This memory address is the place inside
of kernel memory where that particular structure is located. In Figure 8.6, I've shown the
contents of my System.map file using the command less /boot/System.map. Note that there
are a lot more elements in here than just the system calls. There are a huge number of other
symbols in addition to the system call information, such as other variables and signals
associated with the kernel.

Figure 8.6. Looking at System.map to see the execve system call

information.

Pagina 6 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

In Figure 8.6, I have paged down to the point where I can see the SYS_execve system call,
which is the system call used to execute programs. When one program, such as a command
shell, needs to execute another program, such as a command, it calls the SYS_execve system
call to ask the kernel to start the other program. Note that the memory address associated with
SYS_execve (c0105b10), as well as all other items inside of System.map, start with a
hexadecimal number c. That's because, when referenced from a user-mode process on a
system with a 32-bit processor, all kernel memory structures are located in memory locations
ranging from 0xC0000000 to 0xFFFFFFFF [8].

Linux includes a nice tool named strace for watching various system calls made by a running

user-mode process. You can use strace to invoke any program, and strace will display all
system calls, the arguments passed to those system calls, and the return values from the
system calls as the program runs. In Figure 8.7, I used the strace tool to run the command ls
so we could see all of the system calls made by ls as it lists the contents of a directory. I could
have straced any other program, but I chose ls because it is a familiar program to most Linux

users.

Figure 8.7. Using strace to analyze the system calls invoked when

running the ls command.

As you can see, as the ls command runs, the execve system call is invoked to run the /bin/ls

program, and the open system call is utilized to access various shared libraries. Other system
calls that are invoked by ls include fstat (which checks a file's status, including its permissions

and owner) and mprotect (which limits access to a region of memory while a given program
uses that memory). Using strace, we are witnessing various transitions from user mode to

Pagina 7 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

kernel mode, as the program uses system calls to ask the kernel to perform various operations.
Therefore, we can get a feel for the relative importance of various system calls by watching
which ones common commands on the system rely on. Additionally, we can start to see which
system calls attackers might want to alter as they attack the kernel.

Methods for Manipulating the Linux Kernel

Our methods have not differed as much as you pretend. I am but a shadowy

reflection of you. It would take only a nudge to make you like me… to push you out

of the light.

—Dialogue from Raiders of the Lost Ark, 1981

With our whirlwind tour of the Linux kernel complete, let's turn our attention to how attackers
manipulate the kernel to achieve their dastardly deeds. Keep in mind that the goal of each of
these kernel manipulation tactics is still the same main objective of all RootKits: to provide
backdoor access, while hiding the attacker's presence on the system. In particular, these kernel
manipulation tactics provide methods for implementing backdoors and then hiding those
backdoors on the machine.

With that goal in mind, there are at least five different methods for implementing a kernel-
mode RootKit in Linux. Additional possibilities might also exist, currently tucked away in a
researcher's or attacker's lab waiting to be unveiled on an unsuspecting victim. Yet these five
possibilities represent the most common methods today for implementing kernel-mode RootKits
on Linux machines. These kernel attacks include applying evil loadable kernel modules,
altering /dev/kmem, patching the kernel image on the hard drive, creating a fake view of the
system with User Mode Linux, and altering the kernel using Kernel Mode Linux. Let's analyze
each method in more detail.

Evil Loadable Kernel Modules

A primary method for invading the Linux kernel to implement a kernel-mode RootKit involves
creating an evil loadable kernel module that manipulates the existing kernel. This technique
first emerged publicly in approximately 1997, and grew in popularity over subsequent years,
with a huge variety of different evil module variations now available [9]. Today, it remains the
most popular technique for implementing kernel-mode RootKits on Linux systems.

Remember, loadable kernel modules are a legitimate feature of the Linux kernel, sometimes
used to add support for new hardware or otherwise insert code into the kernel to support new
features. Loadable kernel modules run in kernel mode, and can augment or even replace
existing kernel features, all without a system reboot. Because of the convenience of this feature
for injecting new code into the kernel, it's one of the easiest methods for implementing kernel-
mode RootKits on systems that support kernel modules (e.g., Linux and Solaris). To abuse this
capability for implementing RootKits, some malicious loadable kernel modules change the way
that various system calls are handled by the kernel, as illustrated in Figure 8.8.

Figure 8.8. Some loadable kernel module RootKits alter the system call

table to execute the attacker's module code instead of the legitimate
system call code.

Pagina 8 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

To launch this kind of attack, the bad guy utilizes a loadable kernel module that includes two
components, identified as elements A and B in Figure 8.8. The attacker inserts this module into
the kernel, jumping the gap between Ring 3 and Ring 0 by using the insmod command to put

the module's code inside of the kernel. Once inserted, the attacker's loadable kernel module,
shown as element A in the figure, includes code that operates quite similarly to the original
system call code within the kernel. In our example, the bad guy has created a loadable kernel
module that implements the SYS_execve system call, used to execute programs, but the bad
guy throws in a little twist. When the new, malicious SYS_execve system call is invoked, it will
check to see which program it has been asked to execute. If the execution request is for a
program that the attacker configured the system to redirect, the evil kernel module will actually
execute a different program instead. Otherwise, if the execution request is for some program
the attacker isn't interested in redirecting, the normal program will be run. The new
SYS_execve system call includes intelligence to decide what to execute outright and what to
redirect. That's the twist.

This is all nice, but how does the attacker's malicious SYS_execve get run in the first place?
That's where element B from Figure 8.8 comes into play. The attacker's loadable kernel module
will alter the system call table so that it no longer points to the normal SYS_execve call in the
kernel. Instead, the entry in the system call table associated with SYS_execve will now point to
the attacker's own code. The legitimate SYS_execve system call will remain unused on the
system, lying dormant. What the attacker is doing here is playing bait and switch with system
calls to redirect execution of selected user-mode programs.

Instead of implementing all of this functionality from scratch, the attacker could just wrap the
existing SYS_execve system call code with the attacker's own code that includes intelligence to
determine whether to pass the execution request through to the real SYS_execve or to execute
some other program instead. This system call wrapping option, which requires less custom code
from the attacker and is therefore more efficient, is illustrated in Figure 8.9. The system call
table is still manipulated, but now points to the attacker's wrapper code. When the SYS_execve
call occurs, the attacker's wrapper is activated, which checks to see if the execution request is
for a program that the attacker wants to redirect. If so, it'll pass the request off to the real
SYS_execve code to execute the alternate program. Otherwise, the wrapper will just pass in a
request to execute the actual program requested in the system call. Using either alternative

Pagina 9 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

(creating entirely new system call code or wrapping an existing system call's software), the end
result is the same: The SYS_execve call inside the kernel will include execution redirection.

Figure 8.9. Some loadable kernel module RootKits wrap existing kernel

code for system calls.

This technique of rewriting a pointer in the system call table so that it executes the attacker's
code is really another form of the API hooking technique we discussed in Chapter 7. On a
Windows machine, DLL injection involves inserting DLL code into a running process. API
hooking redirects various function calls into the DLL code injected by the attacker. In Chapter 7,
we discussed this concept in the context of injecting Windows DLL code into Windows user-
mode processes. Of course, the Linux kernel doesn't run Windows DLLs. Here, the attacker is
inserting code, in the form of loadable kernel modules, into the Linux kernel. Then, the attacker
performs API hooking by overwriting various memory addresses in the system call table so that
they point to the loadable kernel module. It's code injection and API hooking all right, but this
time in the Linux kernel.

Of course, using this technique against the SYS_execve system call, the attacker has modified
only the execution associated with some user-mode programs, and not any system calls
associated with reading those programs' binary executable files. The resulting execution
redirection is very powerful, because the technique can defeat the file integrity checking tools
we discussed in Chapter 7. As you recall, file integrity checking tools are programs that look for
alterations to various system files, such as the login routine or sshd, which are used for
accessing the system. By reading these files and comparing cryptographically strong hashes of
them against known trusted fingerprints for the files, the file integrity checker can detect a
user-mode RootKit, which would replace the login or sshd binary executable files with backdoor
versions.

With kernel-mode RootKits, everything changes in favor of the attacker. Now, the bad guy will
use execution redirection in a loadable kernel module RootKit to map the execution of the login
and sshd binary executable files to some other programs that include backdoors, such as
programs named alt_login and alt_sshd, where alt stands for "alternative." These alternatives

Pagina 10 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

include some backdoor password the bad guy can use to remotely access the machine. Now,
when a file integrity checking tool comes along and compares the hashes of the login and sshd
files to their previous values, they will remain exactly the same. That's because the attacker
doesn't modify the login or sshd files. The file integrity checker uses the SYS_open and
SYS_read system calls to look at login and sshd, and they appear completely intact, because
they are intact. However, when the system tries to execute the login or sshd programs for a
new user logging in, the evil SYS_execve system call will kick in. The evil kernel module will run
the backdoor versions of these programs, alt_login or alt_sshd.

So far, we've just discussed kernel manipulation in the context of the SYS_execve system call.
An attacker could likewise modify the SYS_open, SYS_read, and any other system call using
this technique. By modifying these and other system calls, the attacker could hide files, TCP
and UDP ports, and running processes on the system. When any user-mode program makes a
system call, the attacker's code will check to see if the user's program is asking questions about
some hidden item in the system. If the user program is looking for a hidden item, the kernel
will lie and say that the item is not on the machine. A single evil kernel module could do all of
this work, remapping or wrapping an arbitrary number of system calls, all with the same piece
of code. In fact, most real-world kernel-mode RootKits alter half a dozen or more system calls
to hide various nefarious activities of the attacker.

For example, suppose an attacker breaks into a machine and installs a backdoor shell listener,
such as the Netcat tool we discussed in Chapter 5. Running the backdoor shell listener creates
several items on the machine an administrator could look for: the executable binary file
associated with Netcat, the running backdoor process, and a TCP or UDP port on which the
process is listening. An administrator might look for the file using the ls or find commands,

the process using the ps or top commands, and the network ports using netstat or lsof. By
installing a kernel-mode RootKit to alter various system calls, the bad guy can hide the file,
process, and network ports. The kernel will fib about any of these traces associated with the
backdoor, regardless of the program that comes asking about it, whether it's ls, find, ps, top,
netstat, or lsof. That, dear reader, is the power of a kernel-mode RootKit in action.

At this point, we should note that installing multiple kernel-mode RootKits on a single system
could have very mixed results. If each RootKit manipulates different system calls, the two could
coexist on the same machine, happily unaware that the other kernel-mode RootKit has been
inserted. Two attackers could coexist on the box, without even knowing or seeing the activities
of each other. However, in all likelihood, the kernel-mode RootKits will go after the same set of
system calls, such as the popular and powerful SYS_execve and SYS_open calls. In this case,
the features associated with the last kernel-mode RootKit installed on the box would override
any features of previously installed RootKits. In other words, the last one in wins the game.

So, we've seen how the attacker can hide files, processes, and network usage with loadable
kernel modules, but the attacker has a problem. There's still the issue of the module itself. If
anyone uses the insmod command to insert a module, under normal circumstances, that

module will show up in the output of the lsmod command, as well as inside of

the /proc/modules file. An administrator could check the list of modules and look for something
fishy. Of course, that's only under normal circumstances, which kernel-mode RootKits deviously
work to change. To avoid detection by lsmod, an attacker could add another system call

modification to the kernel-mode RootKit that hides the kernel module itself. Any requests to list
all kernel modules will be intercepted by the attacker's code, which will only list those modules
the attacker wants the victim to know about. That list, of course, won't include the evil kernel
module. Furthermore, the /proc/ksyms file displays symbols implemented by loadable kernel
modules. However, a kernel module can choose whether or not to export its symbols
into /proc/ksyms with a single line of code. Therefore, looking for evil loadable kernel modules
inside of /proc/ksyms or using the ksyms command (which just reads /proc/ksyms and displays

its contents) is usually futile.

There is another problem for the bad guy with using loadable kernel modules to implement this
type of attack. Loadable kernel modules don't survive across a system reboot. Both legitimate

Pagina 11 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

and evil kernel modules are flushed out when the system is shut down and have to be reloaded
into the kernel during each and every boot sequence. Of course, the attacker wants to make
sure that the evil loadable kernel module sticks to the machine across reboots, without tipping
off an administrator about the attacker's presence.

One common technique to get around this problem is to alter some program included in the
boot process so that it reloads the evil kernel module when the system starts up. The most
popular choice for a carrier of the evil kernel module is the init daemon, the first process that
runs on the box, as illustrated in Figure 8.10. When you boot your system, the kernel is loaded
into memory, as shown in Step 1. Then, in Step 2, the kernel starts the init daemon, which in
turn activates all other user-mode processes on the machine. Attackers often add code to the
init daemon so that, as soon as it starts running, it inserts the evil kernel module, which is
illustrated in Step 3. By using the executable binding techniques we discussed in Chapter 6, the
code to insert the modules is just prepended to the normal init daemon code, resulting in a
single binary executable file for init.

Figure 8.10. Modifying the init daemon to reload an evil kernel module
during the boot sequence.

Of course, once inserted, the loadable kernel module itself masks any changes to the init file on
the hard drive. If any program, such as a file integrity checker, tries to open the init program
file to look at its contents, as shown in Step 4, the kernel module will respond with a lie (in Step
5), saying that the init daemon file looks perfectly intact! Therefore, a file integrity checker
won't be able to detect the subterfuge, as shown in Step 6. Because the init daemon runs
before any other user-mode process on the box, it poisons the kernel before any detection
mechanisms can be executed. Of course, in lieu of the init daemon, an attacker can alter any
other startup script or binary executable on the system to load the evil kernel module, using
any of the startup techniques we discussed in Chapter 5.

Now that we've analyzed the general methods used by most evil loadable kernel modules, let's
focus on two rather popular specific implementations of these ideas. In the next two sections,
we'll look at Adore and the Kernel Intrusion System (KIS), both of which implement all of the
ideas we've discussed so far.

Pagina 12 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Example Loadable Kernel Module RootKit: Adore

Adore is the most popular Linux kernel-mode RootKit in widespread use today. Perhaps that's
where it gets its name: Attacker's "adore" it. On some Web sites in the computer underground,
the tool is even referred to as "mighty Adore," no doubt because of its solid feature set, the
simplicity of its use, and the power it gives an attacker. Written by a developer named Stealth,
Adore targets Linux 2.2 and 2.4 kernels, allowing an attacker to hide on the system by
remapping and wrapping various system calls using a single loadable kernel module. In addition
to Linux, a programmer calling himself bind has ported Adore to FreeBSD. Once installed on a
victim Linux or FreeBSD machine, Adore lets the attacker do the following:

� Hide or unhide files.

� Make a given process ID visible or invisible.

� Make a process ID invisible permanently, so that even Adore cannot make it visible again.

� Execute any program as root, regardless of the actual permissions of the user invoking
the program.

� Hide the promiscuous mode status of the user interface to disguise a sniffer.

� Hide the Adore loadable kernel module itself.

To accomplish these tasks, Adore consists of two components: a loadable kernel module (called
Adore) and a program the attacker uses to interact with the kernel module (named Ava). Think
of Ava as the user interface for Adore. After installing the Adore module using the insmod
command, the attacker must configure it by running Ava on the same system where the module
resides. Ava doesn't work across a network; it must be used to configure Adore on the local
system. Ava presents a simple menu-driven interface, as shown in Figure 8.11.

Figure 8.11. Ava, the Adore user interface.

For remote access of the victim machine, Adore also includes a backdoor root shell listener on a
port configurable by the attacker. The attacker can use Netcat in client mode to connect to this
backdoor listener from across the network and get direct command shell access to the machine.
The command shell process, of course, is also hidden by the kernel module.

Adore also hides TCP and UDP port numbers configured by the attacker. That way, other
network-listening processes created by the attacker will be disguised.

Although Adore does have many features, it does have a significant shortcoming from a

Pagina 13 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

capability perspective. The tool does not include execution redirection capabilities; its focus is
solely on hiding files, processes, TCP and UDP ports, and promiscuous mode. Interestingly,
execution redirection was available in an earlier version of Adore (version 0.32), but was
inexplicably removed in subsequent releases (versions from 0.39b to 0.42 lack the feature).

Example Loadable Kernel Module RootKit: The Kernel Intrusion System

Although Adore might be the most popular kernel-mode RootKit on Linux, there are more
powerful tools available. KIS, written by Optyx, actually includes more features, and is one of
the most powerful kernel-mode RootKits released to date. Implemented as a loadable kernel
module, KIS targets the Linux 2.4 kernel. It offers a standard complement of kernel-mode
RootKit functionality, including the hiding of files and directories, processes, network ports, and
promiscuous mode. KIS also offers execution redirection capabilities.

You might shrug your shoulders and say, "We've seen that before, so what's the big deal?"
Well, the big deal associated with KIS is its incredible ease of use, manifested in two forms: a
slick GUI and an interface centered around hidden processes. First, let's look at its user
interface, shown in Figure 8.12. Using a series of helper screens, the attacker can configure the
KIS kernel module and attach it to any binary executable on the file system, such as the init
daemon, to get KIS restarted at system boot. Once the kernel module has been loaded, the GUI
lets the attacker remotely control the kernel module using the same GUI. The attacker
configures various settings in the GUI, and encrypted commands are carried across the network
to the victim machine, where the KIS kernel module executes them. The KIS user interface is
highly reminiscent of earlier application-level Trojan horse programs, such as the Back Orifice
2000 and Sub Seven tools that we referenced in Chapter 5. However, the KIS GUI controls a
kernel-mode RootKit, not a mere application-level Trojan horse backdoor.

Figure 8.12. The KIS user interface.

As a bonus feature, for its communication across the network, KIS even implements a
nonpromiscuous sniffing backdoor to receive commands on the network without listening on a
port. As we discussed in Chapter 5, this type of backdoor listens for commands from an

Pagina 14 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

attacker by sniffing them off of the line, thereby avoiding a listening port and throwing off the
investigation team. So, embedded inside of KIS, we have a kernel-mode nonpromiscuous
sniffing backdoor. What a nasty combination!

The KIS GUI is certainly a major step forward in the evolution of ease of use in kernel-mode
RootKits, endearing it to legions of script kiddie fans around the globe. However, the GUI is not
the most significant innovation introduced by KIS. The real paradigm shift introduced by KIS is
its use of hidden processes as the conceptual model for interacting with the kernel module.

To understand why the KIS fixation on hidden processes is so important, let's take a step back
to other kernel-mode RootKits, such as Adore, for a moment. Suppose an attacker breaks into a
machine and creates a backdoor listener on the box. After creating the backdoor, the attacker
has to load the evil kernel module and then configure it to hide the backdoor's file, process, and
TCP or UDP ports. Implementing all of this hiding can take valuable time away from the
attacker. Making matters worse, once all of these items are hidden, the attacker cannot see
them any more either! With most kernel-mode RootKits, the kernel lies about the presence of
hidden items to all users of the machine, administrators and attackers alike. Often, when I
personally use a kernel-mode RootKit in my lab, I forget where I put all of my hidden stuff on
the machine. Attackers sometimes do this as well. They'll hide a backdoor, leave for a few days,
and then return, only to grope around trying to find the files or process they hid earlier. Some
attackers even jot down notes on paper to help remember where they put all of their hidden
items on a conquered target. If law enforcement officers seize the attacker's notes, they'll be
able to find all of the hidden elements recorded in those notes.

In a sense, most kernel-mode RootKits go too far in hiding various items, confusing some
attackers in the process. KIS doesn't have this problem. By using hidden processes as the
central mental model for interacting with the tool, KIS is far easier to use. With KIS, anything
created by a hidden process is itself hidden, so an attacker can break into a machine and create
a hidden process. From this hidden process, the attacker can install a backdoor. All aspects of
the backdoor, which likely consists of a file, a running process, and some TCP or UDP port, will
automatically be hidden because they were created by the original hidden process. Similarly, if
an attacker runs a sniffer from within a hidden process, the resulting promiscuous mode status
is automatically hidden. The attacker doesn't have to remember to go back and hide each
element, because they are already hidden. That saves the attacker time.

However, the hidden process model goes even deeper. You see, a hidden process can view all
hidden items on the machine. Outside of a hidden process, all hidden items are, of course,
hidden. So, an attacker doesn't have to jot down paper notes about where various hidden
elements are located. Instead, the bad guy can just fire up a hidden process and then use it to
view all hidden files, processes, and port usage on the machine. However, a system
administrator, who logs into the machine without a hidden process, will not be able to see all of
the attacker's subterfuge. In this way, as illustrated in Figure 8.13, the attacker uses KIS to
create a cone of silence, carving user mode into two worlds: a visible environment and a
cloaked environment. From inside the cone of silence, where the attacker lives, everything on
the system is viewable, hidden items and visible items alike. Outside the cone of silence, where
users and administrators dwell, all hidden items are completely invisible. The KIS kernel module
keeps the two worlds separate by carefully manipulating the system call table to hide things
from visible processes, yet allowing invisible processes to see. That's a highly effective
paradigm for interacting with a kernel-mode RootKit. Sadly, the very powerful ideas originally
introduced by KIS are starting to trickle down into other kernel-mode RootKits.

Figure 8.13. Using KIS, the attacker creates a cone of silence, dividing

user mode into a visible world and a hidden world.

Pagina 15 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

With all of these innovations, you might be wondering why Adore remains the more popular
choice for attackers over KIS. This phenomenon is likely due to the fact that Adore is far easier
to compile and install than KIS, so the script kiddies often migrate to Adore. Once it's installed,
however, KIS is easier to use and more powerful.

Who Needs Loadable Kernel Modules? Attacking /dev/kmem Instead

/dev/kmem is our friend.

—Kernel-mode RootKit developers Sd and Devik, 2001

Although modifying a running kernel using loadable kernel modules is a widespread and
effective technique, it's not the only game in town for implementing kernel-mode RootKits.
Suppose the target machine was built without kernel module support. When compiling a custom
kernel for a Linux machine, an administrator can choose whether to add loadable kernel module
support or omit it from the resulting kernel. Without module support in the kernel, the
administrator will have to build all kernel-level functionality right into the core kernel itself.
Such kernels cannot be abused with evil loadable kernel modules, as the hooks necessary for
loading such modules into the kernel (stuff like the /proc /ksyms file) are left out. For
information about building a kernel that doesn't require or support modules, you can refer to
various free Internet guides [10]. Alternatively, you could use Bill Stearns' wonderful kernel-
building package (called, appropriately enough, buildkernel), at www.stearns.org/buildkernel/,
which includes an option for creating a kernel that doesn't support modules.

So, if you build a kernel that lacks module support, are you safe from kernel-mode RootKits?
Sadly, the answer is no. Various kernel-mode RootKit developers have honed their wares so
they can now invade the kernel even without using any loadable kernel modules. To accomplish
this, they utilize the facilities of /dev/kmem, that interesting file that holds an image of the
kernel's own memory space where the running kernel code lives. By carefully patching the
kernel in memory through /dev/kmem, an attacker can implement all of the attacks we
discussed in the loadable kernel module part of this chapter, but without using any modules at

Pagina 16 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

all.

"But wait a minute," you might be thinking, "earlier in the chapter you said that /dev/kmem
was incomprehensible gibberish for humans." Yes, that's true. However, with the appropriate
parsing tools, /dev /kmem can be read from and written to by a root-level user. In fact, some
hard-core system administrators utilize debuggers and custom code to interact directly
with /dev/kmem when troubleshooting systems. However, the concept of using /dev/kmem for
implementing kernel-mode RootKits was originally introduced publicly in a detailed technical
discussion and political manifesto written by Silvio Cesare in November 1998 [11]. The ideas
were further refined and simplified by two kernel-mode RootKit developers named Sd and Devik
in their white paper devoted to the topic in late 2001 [12].

In their white paper, Sd and Devik released code that searches /dev/kmem, looking for the
system call table. When it finds the system call table, their software searches the table for
various system call entries, such as those associated with SYS_open, SYS_read, and
SYS_execve. Then, things get very interesting. The code released by Sd and Devik includes a
variety of functions, but of most interest are the functions rkm (an abbreviation for read kernel
memory) and wkm (which stands for write kernel memory). Using rkm, the attacker can read
various useful items inside of kernel space. With wkm, the bad guy can insert code directly into
kernel memory space. With rkm and wkm, in a sense, these developers have used /dev/kmem
instead of modules to jump the divide between user mode and kernel mode.

Using this technique for altering /dev/kmem in a live kernel, an attacker can implement any of
the ideas we discussed in the loadable kernel module section, without the use of any loadable
kernel modules at all. For example, the attacker can use rkm and wkm to insert alternative
code for the SYS_open, SYS_read, and SYS_execve system calls. Additionally, the attacker can
modify or even replace the system call table inside the kernel so that it points to the attacker's
code and not the legitimate kernel code. With these capabilities, shown in Figure 8.14, the
attacker has complete control over the system and can implement file, process, network port,
and promiscuous mode hiding that we saw in earlier kernel-mode RootKits. Additionally, as
before, an attacker can tweak the kernel so that it performs execution redirection.

Figure 8.14. Altering a running kernel by reading and writing

to /dev/kmem.

Pagina 17 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

As with loadable kernel module RootKits, these changes to a live kernel through /dev/kmem do
not survive across a reboot. Therefore, most attackers apply the same trick with the init
daemon or other start-up program or script to get the /dev/kmem alteration applied to the
kernel while the system is booting.

In addition to providing the useful parsing tools for searching, reading, and writing /dev/kmem,
Sd and Devik also released a sample kernel-mode RootKit built on these ideas. They gave their
tool the very elegant name SucKIT, which is an acronym for Super User Control Kit. From a
functionality and usability perspective, the SucKIT kernel-mode RootKit is very similar to Adore,
offering file and process hiding, as well as a password-protected backdoor shell listener. The
biggest difference with SucKIT, of course, is that no kernel module is included, and module
support isn't required on the target machine. By simply running SucKIT at the command line
while logged in as root, the program automatically locates the system call table in memory,
allocates space in the kernel to use, injects code into kernel memory, and alters the system call
table to point to the new code. Although there is no GUI, installation couldn't be much simpler
than that. All of the hard work of reading, searching, and altering /dev/kmem is done by the
software itself. The attacker just runs a single command line to completely take over the
system.

Patching the Kernel Image on a Hard Drive

You know, having to do that little dance of reloading kernel alterations, whether loadable kernel
modules or /dev/kmem manipulation, every time the system reboots can be complex.
Unnecessary complexity could lead to failures, either crashing the system or breaking the
kernel-mode RootKit. There is in fact a simpler way to manipulate the kernel. With root-level
permissions on the box, the attacker could just replace or patch the kernel image file on the
hard drive itself. That way, on the next reboot of the system, the attacker's evil kernel would be
reloaded into the system instead of the original wholesome kernel. Because the kernel image on
the hard drive is just a file (readable and writable by root-level accounts), there's no need for
the attacker to jump from user mode to kernel mode to make changes to this file. User mode to
kernel mode transitions (e.g., those that occur through system calls, insmod, and /dev/kmem)

are only required to interact with a running kernel, but aren't necessary to change the kernel
image file on the hard drive. By just exercising rootly privileges, the attacker can overwrite the

Pagina 18 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

kernel image file on the hard drive and get the new, evil kernel loaded into memory at the next
reboot, as illustrated in Figure 8.15.

Figure 8.15. Replacing the kernel image on the hard drive.

In the Linux file system, the kernel image is stored in a file called vmlinuz, typically located in
the /boot directory. To minimize storage requirements for boot devices, most of this kernel
image file is compressed. During system boot, the first portion of vmlinuz gets loaded into
memory and executed. This first portion of vmlinuz then decompresses the rest of the vmlinuz
file and loads the entire uncompressed kernel image into memory. Sometimes, if you build your
own kernel, you'll find a file called vmlinux, with a trailing x instead of a z. A vmlinux kernel
image isn't compressed, and must first be compressed to prepare it for booting, converting it to
vmlinuz. When replacing an original kernel with an evil version, the attacker must create the
alternative kernel image, compress it, and overwrite the existing /boot /vmlinuz file with the
evil replacement.

Replacing the entire kernel image file with a nasty variant is rather easy. An attacker could
build a custom kernel on his or her own machine, and deploy this evil kernel on the victim's
machine. Because Linux is an open-source operating system, the bad guy can modify the kernel
source code to create a custom kernel that provides the attacker with backdoor access and
hides nefarious activities on the machine. For example, with a dozen or so tweaks to some
system calls in the kernel source code, an attacker can create a kernel image that would hide
files with certain names, mask specific TCP and UDP ports, render processes with some names
invisible, and implement execution redirection. Rather than monkeying with the system call
table, the attacker can just sprinkle some new code right into the existing system call functions.
In other words, the entire new kernel would be the RootKit, replacing the old kernel outright.
The attacker could even program the new evil kernel so that it looks like the original kernel. For
example, the evil kernel can be configured so that if anyone opens the altered /boot/vmlinuz
file, the kernel will return the old, unmodified kernel image file, which it has squirreled away on
the hard drive, instead of the modified version. In this way, an attacker can foil any file
integrity checks against the kernel image file by altering system call code associated with
opening and reading files.

There is a bit of a problem for the bad guys with the wholesale replacement of the kernel,
though. Perhaps the victim machine has very specific kernel options, tricked out with custom
code created by a system administrator who dabbles in specialized kernel development. Or,
perhaps the existing kernel has some very special hardware support compiled in it that the
attacker doesn't know about. If the attacker creates a brand new kernel and swaps it in place of
the customized kernel, the administrator might quickly notice the attack or some hardware
might become inaccessible. To avoid this situation, the attacker can simply edit the existing
vmlinuz file instead of replacing it. By applying patches to the kernel image file on the hard
drive instead of replacing it entirely, most of the existing functionality of the custom kernel will
be preserved. The attacker's options will just be grafted into the existing kernel image file, as
pictured in Figure 8.16.

Figure 8.16. Applying patches directly into the kernel image on the hard

Pagina 19 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

drive.

In 2002, someone called Jbtzhm released a white paper and some code that allows an attacker
to open, uncompress, parse, and apply patches directly to a vmlinuz file [13]. Jbtzhm's
technique lets the attacker append new code to the end of the kernel image file, and then
modify pointers within the existing code to point to the new functionality. Jbtzhm designed his
software so that it would insert the code from a loadable kernel module right into the kernel
image file, rather than having to load modules the old-fashioned way—after system boot.
Loadable kernel modules, after all, are nice little chunks of kernel-mode code, ready to be
applied into the kernel. Jbtzhm's technique just inserts the bundles of code from loadable kernel
modules into the kernel image file to simplify the implementation of code to be grafted into the
kernel. Therefore, using this technique, an attacker could patch a kernel image file with the
Adore or KIS loadable kernel module RootKits, and have them automatically applied from the
vmlinuz file itself during system boot.

The three methods for altering kernels that we've discussed so far (loadable kernel modules,
altering /dev/kmem, and altering kernel images on the hard drive) are by far the most popular
ways to implement kernel-mode RootKits on Linux today. However, there are two other
methods that attackers have discussed at public conferences for implementing kernel-level
attacks. These other methods for implementing kernel manipulation involve tools called User
Mode Linux and Kernel Mode Linux, which we'll discuss in the next two sections. Although they
haven't yet been widely used in attacks, these two additional methods could be utilized
increasingly in the near future.

Faking Out Users with the User Mode Linux Project

Do you think that's air you're breathing now?

—Dialogue from The Matrix, 1999

The substitute or patched kernel idea from the last section could be extended even further,
employing an amazing tool called User Mode Linux (UML), a project originally created and
currently headed by Jeff Dike. Freely available at http://user-mode-linux.sourceforge.net/, UML
lets its user run an entire Linux kernel inside of a normal user-mode process. It's called User
Mode Linux because it runs an entire Linux system, with its own kernel, applications, and so
forth, inside a user-mode process on a host Linux system. So, with UML, I can take my Linux
machine, with its normal kernel intact and running just fine, and create multiple UML instances
running as user-mode processes on my existing system. Each of these additional UML instances
has its own kernel mode and user mode inside.

With UML, my underlying operating system acts as a host, with all of my UML instances as
guest operating systems running on top of the host. These guest operating systems are entire
Linux installations, each with its own kernel, network options, file system, and applications, all
wrapped up inside of a standard Linux user-mode process. Each UML instance is independent of
the others, running whatever programs it requires inside its own user-mode space. I can

Pagina 20 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

therefore create virtual Linux machines that run on top of my real system, right alongside of
normal user processes, as illustrated in Figure 8.17.

Figure 8.17. Legitimate uses of User Mode Linux involve creating

multiple virtual Linux Machines on a single Linux system.

Perhaps you're familiar with VMWare or VirtualPC, two tools that let users create guest
operating systems running on top of a host operating system. UML can also be used to
implement guest operating systems on a host, but it differs from VMWare and VirtualPC in two
important ways. First, UML is free and open source. Second, VMWare and VirtualPC implement
a virtual x86-compatible processor, so almost any x86-compatible operating system (e.g.,
Linux, Windows, BSD, etc.) can be installed as a guest on them. UML, on the other hand,
doesn't emulate an x86 processor. Instead, it acts as a proxy for making Linux system calls,
creating the abstraction of Linux guest kernels living on top of a Linux host operating system.
The current iteration of the project is Linux-centric. Still, despite this difference, UML is quite
useful.

Please keep in mind that UML wasn't designed as an attack tool. It can be employed in all sorts
of positive roles. For hard-core programmers working on changes to their kernel or writing new
applications, UML provides a nifty little sandbox to run experiments inside. If the kernel
modifications or new application completely crash the UML instance, the developer can simply
restart that UML instance without rebooting the entire host system. Therefore, UML provides a
great deal of convenience for developers and experimenters. Additionally, service providers
could utilize UML to provide virtual Linux hosting services to clients. Each client could rent (or
be given) a UML instance on the service provider's single Linux machine. The UML instances are
independent of each other, so, to users, it would appear that they are logging into and utilizing
their own separate Linux machine. In fact, as of this writing, there are numerous commercial
UML hosting service providers available on the Internet [14].

How could an attacker apply the otherwise virtuous UML in a subversive role, undermining the
existing kernel on the machine? Consider the attack shown in Figure 8.18. The bad guy could
break into the machine with root privileges, make a copy of the existing file system, including
the kernel, all applications, and user data, and load them into a guest UML instance on the
machine. Then, after starting this UML guest containing a copy of the original system, the
attacker could install a new evil kernel on the underlying host system. All users and
administrators logging into the machine would be unwittingly accessing the UML instance, and
not the "real" underlying operating system, controlled by the attacker. The attacker,
meanwhile, could run all sorts of nasty processes on the host operating system, which the users
inside of the UML instance would not be able to notice. In essence, this attack works like a
reverse honeypot. Instead of trapping attackers inside a jail without their knowing it, which
normal honeypots do, this type of attack traps system administrators and users in a jail.

Figure 8.18. Employing User Mode Linux to confine legitimate users

Pagina 21 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

inside a prison.

To successfully implement this subterfuge, the attacker would need to ensure that the UML
instance with the image of the real system is restarted at each and every reboot of the overall
host operating system. This isn't a major problem, as the various scripts and programs
associated with running UML can be set as startup scripts on the host operating system. Of
course, the rather complex process of booting up the actual (but evil) kernel, followed by
initiating a UML session with its own virtuous kernel wrapped inside, might get noticed by a
suspicious system administrator watching messages from the startup scripts during the boot
process. However, the attacker could carefully disguise the actual boot-up messages and the
UML initiation messages so that the system appears to be normal during the boot-up phase.

By deploying UML on a victim machine, attackers turn the whole system into their playground,
confining normal users and administrators into a small UML prison tucked away in a corner of
the system. The real concern here, of course, is that the users and administrators have no idea
that they are in a prison. UML becomes a cone of silence wrapped around legitimate users and
administrators. With UML going about its business, the system looks normal to them. Their
normal kernel is running, all of their files are still on the hard drive, and programs run the same
way they did before the attack occurred. The victims are blissfully ignorant of their UML-induced
cage.

The Kernel Mode Linux Project

With UML, we've just seen the power of running an entire Linux kernel inside a user-mode
process. There's another technique that sort of reverses this concept, which can again be
exploited in a kernel-level attack. Instead of running an entire Linux kernel inside a user-mode
process, how about simply running a user-mode process in kernel mode itself? That is, we could
run a user-mode process, but have it execute in Ring 0 of the CPU, giving it full access to all
kernel data structures. As with UML, there's even an open-source project devoted to this
concept, called, appropriately enough, Kernel Mode Linux (KML).

KML is the brainchild of Toshiyuki Maeda, and is freely available at http://web.yl.is.s.u-
tokyo.ac.jp/~tosh/kml/. To deploy KML, an administrator (or attacker) must compile a special
kernel with KML support. Implementing KML isn't a major feat of coding, however. The KML
implementer just needs to download Maeda's code, and answer "Y" in the kernel-build script
when prompted whether to insert KML functionality. Then, once the KML-capable kernel is
installed on a system, a special directory called /trusted is created. Any binary executable
located in /trusted will run in kernel mode on the machine. So, for example, if you want to run
the ls command inside of kernel mode, you'd just copy ls into /trusted, and then

Pagina 22 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

execute /trusted/ls. The ls command now runs, but this time in kernel mode. Actually, the ls
command, while executing, is a separate process, not grafted into the kernel memory.
However, it runs with all of the permissions of the kernel, existing in Ring 0, not Ring 3.
Because ls is fairly well-behaved, it won't hurt the system. However, we've just employed KML

to cross the Rubicon from Ring 3 to Ring 0, as shown in Figure 8.19.

Figure 8.19. Using KML to run a process in kernel mode.

Like UML, KML wasn't created with evil intentions. It was designed so that a software developer
or administrator could run well-behaved programs in the kernel mode to improve efficiency and
performance. On a normal (non-KML) Linux system, whenever a user-mode process makes a
system call (which happens all the time), a major context switch occurs. When the flow of
execution transitions from Ring 3 to Ring 0, several user-mode data structures have to be
saved in memory, and new kernel-mode data needs to be loaded. This transition takes time and
CPU cycles. Maeda created KML for applications with very high performance demands to avoid
the context switch.

Of course, running programs designed to execute as user-mode processes in kernel mode can
be very dangerous. The process could accidentally (or purposely) alter data structures inside
the kernel, making the system highly unstable, or instantly crashing it. Therefore, KML isn't for
the faint of heart, nor is it appropriate in the vast majority of production environments. Still, for
experimental systems and playing with running kernels, KML is a fascinating project.

Of course, an attacker could use KML in a kernel-level attack. Suppose a bad guy takes over
your machine. The attacker could replace your kernel or patch it so that it now supports KML.
Then, the attacker could write a malicious program that runs a process in kernel mode, utilizing
KML to make the jump from Ring 3 to Ring 0. Once running, the malicious process would search
for and alter the system call table and system call code to replace them with the attacker's own
software. The attacker's software would implement a kernel-mode RootKit, with all of the hiding
and execution redirection tricks we've seen with other forms of kernel-level malware. This type
of attack is illustrated in Figure 8.20. Although this type of attack hasn't yet been reported in
the wild, it is certainly possible.

Figure 8.20. Using KML to attack the kernel, altering the system call

table and system call code.

Pagina 23 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Defending the Linux Kernel

So, as we've seen, there are a myriad of possibilities for attacking the Linux kernel, all of which
result in complete domination of the victim machine by a nefarious attacker. How can you
defend against such attacks? Well, as with the user-mode RootKits we discussed in Chapter 7,
the defenses fall into three different categories: Prevention, Detection, and Response. Let's
explore the defenses available in each of these categories.

Kernel Mode RootKit Prevention on Linux

An ounce of prevention is worth a pound of cure.

—Anonymous

Just like the user-mode RootKits we discussed in the last chapter, all of the kernel manipulation
attacks we've discussed in this chapter require the bad guy to obtain root-level permissions on
the victim machine first, before installing any kernel-manipulation code. Therefore, you can
stop would-be kernel-altering attackers in their tracks by preventing them from getting
superuser privileges on your machines in the first place. Vigorously apply the defenses we've
discussed throughout this book. Use tools like Bastille Linux, which we discussed in more detail
in Chapter 7, to harden your system configuration. Disable unneeded services and make sure
you rapidly deploy patches to your sensitive systems. Older versions of the Linux kernel are
particularly susceptible to kernel attacks, and they have widely known vulnerabilities that an
attacker could exploit, such as the ptrace flaw that plagued Linux kernel version 2.4 in 2002
and 2003 [15]. By keeping your system, and especially the kernel, patched and up to date, you
won't have such vulnerabilities acting as entry points for the bad guys. Furthermore, educate
users about the need to secure their systems and not run untrusted code. With kernel-mode
RootKits on the loose, it's more important now than ever to run a tight ship when configuring
and maintaining your systems.

In addition to configuring your systems securely and patching them, you might want to consider
deploying Linux kernels that do not support loadable kernel modules on your most sensitive
systems, such as your publicly accessible Web, e-mail, DNS, and firewall systems. You likely

Pagina 24 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

don't need kernel module support on such machines, as patching the kernel on a live production
system with a module is very dangerous and could crash the system. When was the last time
you inserted modules into your critical production Web, e-mail, DNS, or firewall servers?
Probably never. Following directions readily available on the Internet [10], or using Bill Stearns'
kernel building script [16], you can easily create a custom Linux kernel that has all the
functionality that you require built in, without supporting kernel modules.

Of course, as we saw earlier in the chapter, bad guys could go after /dev/kmem directly and
poison your kernel even if module support isn't available. Still, by just getting rid of loadable
kernel modules, you've raised the bar against the rank-and-file script kiddies who rely solely on
loadable kernel modules for their attacks. Instead of allowing an attacker to completely hose
your kernel with a simple insmod command, you've increased security so that your adversaries

will have to work somewhat harder to undermine your kernel. We should note that some people
use the term monolithic to refer to a kernel without module support, although hard-core kernel
developers blanche at using this word for this concept. They call such kernels non-modular,
reserving the word monolithic to indicate a kernel that supports numerous features in kernel
mode, instead of pushing almost all capabilities into user space [17].

A related approach is to utilize a kernel that was specifically modified to prohibit a module's
ability to alter the system call table. In particular, some versions of the Linux kernel do not
export the system call table [18]. Exporting of the system call table allows modules to read and
even update this crucial data structure in the first place. Without this export, loadable kernel
modules cannot alter the system call table, foiling some kernel-mode RootKits. In particular,
RedHat grafted this feature into the version of the kernel included in RedHat 8.0 and 9.0, and
Linus Torvalds built it into the development kernel version 2.5.41. For this reason, the stock
version of Adore and most other module-based kernel-mode RootKits will not work on RedHat
8.0 and 9.0. That's pretty nice, as Adore is the most popular kernel-mode RootKit in use today.
Outside of recent RedHat versions and experimental kernels, though, this feature hasn't been
widely included in other kernel versions as of this writing. Also, it's important to note that, even
with this feature, the /dev/kmem-style RootKits, like SucKIT, will still function appropriately. To
make Adore or KIS work on these systems, an attacker would have to modify the RootKit code
to take advantage of /dev/kmem, or add the system call table export feature that RedHat
removed back into the kernel. As you'd no doubt guess, there is even freely available code for
re-adding the system call table export, called addsyms, available at
http://xenion.antifork.org/files.html.

After hardening your machine and removing kernel module support, you might want to turn to
some freely available tools to help limit attackers' access to your systems. One noteworthy free
tool for identifying and controlling the flow of action between user mode and kernel mode is
Systrace by Niels Provos, available at www.citi.umich.edu/u/provos/systrace/. Don't get
confused by the name Systrace. Earlier in this chapter, we ran a tool called strace, which
merely shows the system calls made by an application. Systrace goes far beyond simple strace.
Once installed on Linux, FreeBSD, and Mac OS X machines, Systrace tracks and limits the
system calls that individual applications can make.

So, using Systrace, you can run an application under normal, controlled circumstances and
record which system calls it makes. For example, you could run your Web server on a test
machine and log all of its system call activity. You now have a known set of system calls
required by the intact Web server. Now, you can use Systrace to limit that application so that it
cannot make any other system calls on the machine. In a sense, you've locked the application
so that it can only access the normal set of kernel functionality that it requires to do its job. If it
tries to make other system calls, such as those calls associated with inserting a module into the
kernel, Systrace will stop the activity and return a failure notice for that system call. In this
way, you can isolate various programs inside of little cages, where they can only execute the
system calls they normally require. If Systrace observes an application trying to run other
system calls, it'll alert you about a misbehaving application, possibly due to an attacker's
undermining that program.

In addition to Systrace, you could also turn to security-enhancing loadable kernel modules. Just

Pagina 25 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

as the bad guys employ evil kernel modules to undermine the Linux kernel, system
administrators and security personnel can utilize wholesome modules to buttress the overall
security of a Linux system. Of course, if you've removed module support from your kernels,
you'll have to compile in any code offered by a security-related kernel module directly into your
kernel. One worthwhile project that focuses on increasing the overall security of Linux, starting
with the kernel, is the Linux Security Module (LSM) initiative, described in detail at
http://lsm.immunix.org. It's important to note that LSM doesn't stop evil kernel modules
directly. Instead, LSM technology makes the overall system more secure, closing various
avenues that attackers typically employ to break into root. By denying them root access, LSM
improves security so that the bad guys cannot modify the kernel or otherwise compromise the
machine.

Let's look at the origins of LSM to get a feel for its design goals. Back in March 2001, the U.S.
National Security Agency (NSA) delivered a presentation on its Security Enhanced Linux
(SELinux) project in front of the Linux Kernel Summit, an annual gathering of hard-core kernel
developers. Prior to the presentation, the NSA publicly released a version of the Linux kernel
that includes far more detailed security controls, applying mandatory access controls to critical
system components and functionality. "Normal" Linux is built around discretionary access
controls, which allow users and administrators to apply permissions to various system files at
their own discretion. Under this paradigm, a user or administrator can purposely or accidentally
weaken the security of a system by changing the read, write, and execute permissions on
various critical files. With mandatory access controls, such as those implemented in SELinux,
access to certain critical system components, including data structures and files associated with
the kernel, is controlled by default and cannot be altered by a user or administrator. That's why
these controls are mandatory and not discretionary. In a sense, many security settings, like the
read, write, and execute permission of some critical files, are hard coded into the machine.
Therefore, if the mandatory access controls are implemented properly, the kernel and other
pieces of the operating system are less exposed to manipulation by a bad guy. Based on the
NSA presentation at the 2001 Linux Kernel Summit, Linus Torvalds and other kernel developers
began to discuss how to incorporate some of the SELinux ideas into the overall Linux kernel,
and the LSM project was born.

Mandatory access controls are just one possible security feature that could be implemented via
LSM, but other options are certainly available. In fact, LSM is an architectural framework for
plugging all kinds of security features into the Linux kernel. The LSM project is currently
spearheaded by Immunix, a company that creates a commercialized hardened version of Linux.
In essence, LSM adds security hooks to the Linux 2.4 and 2.5 kernels. These hooks allow a
loadable kernel module to make security decisions about what should and shouldn't be allowed.
LSM doesn't specify what these security decisions should be. It just provides an interface for
connecting the decision-making security logic with the kernel itself. Whereas evil loadable
kernel module RootKits undermine the kernel, LSM lets modules be applied to enhance the
security of the overall system, thereby preventing manipulation by the bad guys.

In plain old vanilla Linux, a base set of security controls is built into the kernel itself. However,
these controls are a one-size-fits-all approach that Linux inherited from UNIX systems of
decades ago. These default controls focus on access to files, specifying who can read, write, and
execute each file on the file system. With LSM, a kernel module can specify all kinds of different
or additional access controls, specifying, for example, files that should be strictly off limits or
even data structures in the kernel that shouldn't be altered.

LSM provides the overall framework and interface for writing these security modules. A variety
of different groups have created LSM-compatible modules that increase the built-in security of
Linux. After all, a security specification is nice, but only implementations make it real and
usable. Table 8.3 includes a variety of free, open-source LSM implementations that improve the
overall security of a Linux machine. Each of these modules can boost the underlying security of
Linux to prevent a bad guy from getting root and mounting a kernel-mode RootKit attack. It's
crucial to note, however, that use of any of these modules fundamentally changes the security
controls of your Linux system. Therefore, it's possible that applications installed on a Linux box
will break if you install LSM without first carefully configuring and testing the system. Also,

Pagina 26 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

because it changes the underlying access control rules in Linux, an LSM module could
complicate administration of the machine. A system administrator fully versed in "normal" Linux
could be completely confounded by the security controls introduced by an LSM. Therefore,
system administrators and security personnel must gain experience on the specific security
features implemented in an LSM before rolling it into production.

Kernel Mode RootKit Detection on Linux

Even with the best defenses, an attacker still might find a hole in your armor and install a
kernel-mode RootKit. Once a kernel-mode RootKit is installed, we cannot fully trust any results
from our system. It all comes down to how thoroughly the kernel-mode RootKit software hides
itself and how carefully the attacker configures it. Although detection can be a major challenge,
we do have numerous mechanisms at our disposal to discover traces of kernel-mode RootKits
on our systems.

Table 8.3. Various LSM Implementations

LSM Name Location Purpose

SELinux www.nsa.gov/selinux This LSM implements a security architecture
based on SELinux, created by the NSA. It
includes mandatory access controls, as well as
role-based access controls, which assign users
to different roles and determine their
privileges based on their assignments.

Domain and
Type
Enforcement

www.cs.wm.edu/~hallyn/dte/ This module groups processes together into a
set of domains. Various files are then assigned
an attribute called a type. Then, various
domains are given controlled and explicit
access to specific types.

Openwall LSM www.openwall.com/linux This module implements several security
restrictions, including limits on user access of
the /proc file system and nonexecutable
process stacks to prevent a variety of buffer
overflow attacks.

LIDS www.lids.org The Linux Intrusion Detection System (LIDS)
provides a variety of security features,
including:

� File protection, locking files so that they
cannot be altered, even with root
permission

� Process protection, to prevent access to
critical processes

� Fine-grained access control lists

� Security alerts for attacks against the
kernel

� Kernel-level port scanning detection

� Restrictions on processes from listening
on network ports

Pagina 27 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

First, look for suspicious network activity coming from a system. Even though local activity is
hidden from system administrators, a network-based IDS can observe attack packets coming
from a machine infected with a kernel-mode RootKit as the attacker tries to take over other
systems across the network. Furthermore, if the attacker plants a backdoor listening on a TCP
or UDP port, a port scanner such as Fyodor's Nmap (which is free at www.insecure.org) can
remotely detect the listening ports, even though they are hidden from all local users and
administrators. Also, look for unexpected reboots of your systems. Although loadable kernel
module and /dev/kmem alterations don't require a reboot, the other methods of kernel
manipulation we've discussed (overwriting the kernel image, using UML, and installing KML) do
require the attacker to reboot the system. Although an unexpected reboot is no guarantee that
an attacker has taken over your box and installed one of these nasties, it is an indication that
something might be out of the ordinary. You should take a deeper look, using the response
tools we'll discuss in this section, if your system reboots itself from time to time.

Additionally, you should still use file integrity checking tools, such as Tripwire, AIDE, and the
related programs that we discussed in Chapter 7. A thorough bad guy will configure the
manipulated kernel with execution redirection and other alterations that lie to the file integrity
checker about all file changes on the system. If the attackers very carefully cover all of their
tracks, they can fool a file integrity checker. However, a less careful attacker might forget to
configure the kernel-mode RootKit to hide alterations to one or two sensitive system files. Even
a single mistake in the file-hiding configuration of the kernel-mode RootKit by the bad guys
could expose them to detection by your file integrity checker. Therefore, file integrity checking
tools remain very valuable, even though a kernel-mode RootKit can foil them if the attacker is
super careful. I'd rather not depend solely on the attackers' making mistakes to discover their
treachery, but you better believe I'll be sure to take thorough advantage of their errors.
Deploying file integrity checking tools on all of my sensitive systems lets me prepare for such
circumstances.

Another tool that we discussed in Chapter 7 can be useful in detecting these kernel-mode
attacks, namely chkrootkit. By looking for various system anomalies introduced by kernel-mode
RootKits, the free chkrootkit tool can detect Adore, SucKIT, and several other kernel-mode
RootKits. For you fans of The Matrix, chkrootkit is really looking for glitches in the Matrix. In the
movie, glitches in the Matrix occur when the bad guys start changing things, creating a déjà vu.
Similarly, with a kernel-mode RootKit, an inconsistency in the system's appearance could be an
indication that something foul has been installed. The scripts included in chkrootkit perform
tests that can be used to catch the kernel in a lie about the existence of certain files and
directories, network interface promiscuous mode, and other issues that kernel-mode RootKits
generally fib about.

One of the ways that chkrootkit finds kernel-mode RootKits is by looking for inconsistencies in
the directory structure when a file or directory is hidden. Each directory in the file system has a
link count, which indicates the number of other directories and files that a given directory is
connected to in the file system structure. For each directory, this link count should be two more
than the number of files in the directory. That way, the directory would have one link for each
file, plus one for the parent directory (..) and one for itself (.). Many kernel-mode RootKits,
such as Adore, hide files and directories without manipulating the link count of the parent
directory. Chkrootkit combs through the entire directory structure, counting the number of files
and directories that it can see inside each directory and comparing it to the link count. If it finds
a discrepancy, chkrootkit prints a message indicating that there might very well be directories
that are hidden by a kernel-mode RootKit. Unfortunately, as of this writing, the current version
of chkrootkit cannot detect KIS, which manipulates even the link count associated with hidden
files and directories. KIS is smart enough not to introduce that glitch into the Matrix.

Beyond general RootKit detectors like file integrity checkers and chkrootkit, there are also tools
that specialize in detecting the behavior most often associated with kernel-mode RootKits, such
as altering the system call table or loading modules. In particular, a tool called KSTAT (an
awkward acronym that stands for Kernel Security Therapy Anti-Trolls) is freely downloadable
from www.s0ftpj.org/en/tools.html. On Linux 2.4 kernels, KSTAT helps find and uninstall
kernel-mode RootKits. For detection, KSTAT looks for changes to the system call table. It'll even

Pagina 28 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

scan /dev/kmem to look for the memory locations associated with all system calls, and compare
these results with the information in the System.map file. If it finds a discrepancy, KSTAT warns
a system administrator that someone has altered the system call table. Just as the bad guys
look through /dev/kmem to break our systems with tools like SucKIT, we can use KSTAT to look
through /dev/kmem to find their attacks.

Additionally, like Systrace, the KSTAT tool can also create a list of fingerprints for the system
calls used by various critical programs, such as a Web or mail server program. If any of these
system calls are altered, or additional system calls are invoked by these programs, KSTAT can
warn an administrator that something foul might be occurring.

In addition to KSTAT, another free project that looks for manipulation of the system call table
on Linux is called Syscall Sentry, written by Keith J. Jones. Syscall Sentry is a loadable kernel
module that is typically inserted during system startup. If an attacker inserts a module that
alters the system call table, the Syscall Sentry module detects the alteration, logs the event,
and alerts the system administrator about this anomalous activity.

Beyond Linux, other tools provide system call table monitoring for other varieties of UNIX. In
particular, a tool named KSEC provides such services on FreeBSD and OpenBSD, available at
www.s0ftpj.org/tools/ksec.tgz. On Solaris systems, you can use a tool called Listsyscalls by
Bruce M. Simpson, available at www.packetstormsecurity.org. Both KSEC and Listsyscalls
provide very similar functionality to that offered to Linux users through KSTAT and Syscall
Sentry.

Kernel Mode RootKit Response on Linux

Now, suppose these detection mechanisms or even your intuition tells you that some dastardly
attacker has installed a kernel-mode RootKit on your machine. When you investigate to
determine what is really happening on your system, you cannot trust anything that comes out
of the kernel. Any analysis tool that you run on the system might be fooled by the existing
kernel, and therefore cannot be trusted. You are in a fantasy world of the attacker's making,
but you need answers about the real state of your system. So how can you cope?

Again, I refer you to the tools we discussed in Chapter 7. Do you remember how we said that to
respond to a RootKit attack, you should use a bootable CD-ROM that includes a Linux operating
system? We even discussed using William Salusky's FIRE and Karl Knopper's Knoppix
distributions, which include specific customizations for security and computer forensics
investigations. Well, back in Chapter 7, I specifically included the word bootable in our
description of FIRE and Knoppix because that very characteristic would become helpful in this
chapter. An investigator can insert the FIRE or Knoppix CD-ROM in a potentially compromised
machine, and boot from the CD-ROM. As the system shuts down, the potentially evil, deceiving
kernel will stop running. When the system reboots, the trusted kernel from FIRE or Knoppix will
be loaded into memory. Because this new kernel is grabbed from the CD-ROM, an investigator
can use it to read the victim machine's file system with more trustworthy results than one can
get from an evil kernel. Therefore, after booting from the CD-ROM, the investigator can run a
file integrity checker (built into the CD-ROM, of course) to look for changes to critical files on
the hard drive.

 < Day Day Up >

Pagina 29 di 29The Linux Kernel

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

