13 917106 ch07.gxp 12/21/06 12:04 AM Page 151 $

Chapter 7

Getting Windows to Lie to You:
Discovering How Rootkits Hide

In This Chapter

Understanding privileges from a rootkit’s point of view
Getting familiar with rootkit hooking tactics

Checking out alternative, more secretive rootkit technologies
Looking into the future of rootkit shenanigans

Fe presence of a rootkit on a computer or network implies a violation of
the very framework of the system you have come to know and trust —
and that’s a security breach of the highest magnitude. No wonder rootkits
have to hide to be able to stick around long enough to perform the nefarious
functions they were designed for. (There’s more about that in Chapter 1.)

How can a rootkit be so all-powerful that it actually gets Windows to lie to
you? Well, that power comes from taking advantage of the flexibility and
versatility that were built into the Windows architecture — a rootkit just
manipulates those features to suit its own needs. That’s why this chapter
investigates how rootkits trick the operating system into becoming an unwit-
ting accomplice to their deception.

Discovering How Rootkits
Hide and Survive

In effect, rootkits are invisible to most traditional malware scanners. They
hide by getting the operating system to lie for them or (in the case of scan-
ners) to report falsified results. They intercept and filter system information
so the operating system’s output excludes any indication of the rootkit.

.

13 917106 ch07.gxp 12/21/06 12:04 AM Page 152 $

’52 Part lll: Giving Rootkits the Recognition They Deserve

Whenever a user or program queries the system, the normal assumption is
that the information the operating system returns is valid. A rootkit can vio-
late this basic trust — and when that happens, the entire premise of accuracy
and reliability that we have come to depend upon gets turned completely
upside down. A well-crafted rootkit makes sure the operating system returns
only doctored information that doesn’t betray its existence. A rootkit hides
itself — and all the infected malware components associated with it. It’s able
to accomplish this by obtaining Administrative access to a system. Once a
rootkit gains control of the Administrator account — the Big Kahuna of the
Windows operating system — it can then control what the system does (and
what it reports).

When a rootkit gets hold of administrative privileges, it can secretly go about
changing and hiding vital system components such as files, directories, ports,
the Windows Registry, and even the code of the operating system itself. One
critical way the rootkit maintains concealment is by hooking system function
calls (more about those in a minute) — altering the data returned by system
utilities and scanners so no evidence of system tampering is revealed.

Some rootkits have what amounts to a self-preservation instinct: The malware
associated with such a rootkit (its payload) employs a feedback mechanism
to ensure the rootkit’s survival. When a rootkit command is executed on a
compromised system, a component of the malware payload examines other
system commands to ensure that the rootkit is fully intact. If it is not, then
the rootkit reinfects the system until it’s in place and functioning again. In a
similar manner, the payload may establish a backdoor and monitor traffic on
that port. If the traffic flow doesn’t match that of an infected machine, the
remote attacker reinfects the host computer (server).

When hackers claim their prize, they sometimes go to extraordinary lengths
to stake their claim. Though not associated with a rootkit — yet — one
recently discovered threat actually comes with Windows security patches in
tow. That’s right — once it compromises the system, it plugs the very vulner-
ability that allowed it to enter so that it can have sole ownership of the com-
puter. Another recently discovered threat that is not known to be rootkit
related — again, yet — installs a counterfeit copy of a highly regarded antivirus
on the system it has compromised. Once it’s on board, it cleans up its new
host to prevent other would-be intruders from gaining entry.

Chilling? Creepy? You bet. A hacker will stop at no extreme to own a system,
and a rootkit is the ideal tool to allow them to maintain complete and unfet-
tered access. All rootkit modifications — whether at the level of the individ-
ual user or the OS kernel — have one aim in mind: Conceal the presence of
the rootkit and its payload on the infected computer so the payload can pro-
ceed with its dirty work without interruption.

13 917106 ch07.gxp 12/21/06 12:04 AM Page 153 $

Chapter 7: Getting Windows to Lie to You: Discovering How Rootkits Hide ’53

Rootkits exist not only on Windows machines but also on other platforms,
such as Mac OS, Linux, and UNIX. Because Windows is by far the most popu-
lar operating system, most malware writers have chosen to concentrate on
Windows so they can get the most bang for their buck.

The remainder of this chapter is a rogue’s gallery of rootkit functions — the
ways they get access to your system, the different types of rootkits, and just
how they hide.

Keys to the Kingdom: Privileges

The concept of computer privileges is the key to how rootkits operate — and
to how they’re classified. Start with a practical fact: Not everybody uses a
computer in the same way — especially on a network. So network administra-
tors assign different levels of privilege to different users; the idea is to pro-
vide appropriate capabilities (and only the needed ones) for doing all those
different jobs. The Administrator account gets to say who can do what.

The most efficient way to imagine computer privileges is as a series of con-
centric rings around a central point — like a simplified representation of the
solar system. Here the “sun” is the kernel of the operating system; and the
planetary “orbits” are the rings that represent the different privilege levels of
the operating system. The ring closest to the kernel (analogous to the closest
orbit around the sun) is referred to as Ring 0. Any component that has Ring 0
privileges is operating at kernel level — the highest level of privilege. As

you follow the rings or circles farther out, their distance from the center
increases — and the farther out they are, the fewer privileges they have.

In reality, Windows systems have fewer rings than the solar system has plan-
ets (even if you don’t count Pluto). In case you’re wondering, Ring 1 and 2
privileges are not used in current Windows platforms; Microsoft used them
last in the 1990s, in an operating system called OS2.

If an application wants to access a system resource such as the hard drive

or memory, it must communicate with the operating system to do so. How
direct or indirect this level of communication is, is determined by the level of
privilege a given application has. Rootkits with higher privileges have an
easier time compromising your system.

Rootkits need administrative access to infect a computer, so two very basic
ways to limit your risk of infection are (1) to log on as a limited user and (2)
use strong passwords to protect all your user accounts.

’54 Part lll: Giving Rootkits the Recognition They Deserve

13 917106 ch07.gxp 12/21/06 12:04 AM Page 154 $

An example of a rootkit snafu

The University of Connecticut (UConn) com-
puter system housed a rootkit for nearly two
years before it was noticed, according to a June
27, 2005 article in eweek. The sheer scale of
possible trouble such a rootkit could have
caused was considerable; it was detected on a
server that contained identity information for
72,000 people — students, staff, and faculty.

Luckily — veryluckily — in this particular case,
there was no leakage of sensitive information

because the rootkit's attempt to install a back-
door failed. Still, the incident serves as a
warning to network administrators and IT
professionals, and stresses the importance of
having adequate recovery and security mea-
sures in place. Although the UConn rootkit made
the news (basically because they reported it), no
doubt there are other servers that have fallen
prey to similar attacks but have managed (so far)
to escape the public spotlight.

Knowing the Types of Rootkits

Rootkits are classified in two basic ways — as user-mode or kernel-mode —
depending on the scope of the effect and whether they exist only in memory
or have written changes to disk that enable them to survive a reboot.
Rootkits can reside at the level of user accounts (Ring 3) or at kernel level
(Ring 0) — and they can be either persistent (able to survive a reboot) or
non-persistent (that is, they disappear at reboot). Table 7-1 provides a basic

summary of rootkit types.

Table 7-1 Summary of Rootkit Types
Persistent or

Type Privilege Level (Ring) Scope of Action Non-persistent

User-mode Low (Ring 3) Localized effect Can be either

rootkit

Kernel-mode High (Ring 0) System-wide Can be either

rootkit (global) effect

The following sections give you a closer look at user-mode versus kernel-
mode rootkits, and at persistent versus non-persistent rootkits.

13 917106 ch07.gxp 12/21/06 12:04 AM Page 155 $

Chapter 7: Getting Windows to Lie to You: Discovering How Rootkits Hide 755

User-mode versus kernel-mode rootkits

Rookits are classified by the mechanisms they employ to infect a computer —
and by the scope of their action (that is, the extent of dirty work they can do).
Scope is, in turn, determined by the privilege level a rootkit can obtain for
itself. Higher privilege levels mean a greater scope.

Whatever their mode, here’s what every rootkit knows: All programs commu-
nicate with each other through function calls. Depending on a program’s
privilege level, it can operate either by making function calls directly to the
kernel (if it’s at Ring 0) or from a more restricted level of privilege (at Ring 3,
the level accorded to user programs). Privilege level determines whether a
rootkit operates in user mode or kernel mode (more about that in the next
section). Presumably all rootkits would love to reside at Ring 0 — but they’ll
take whatever privilege level they can get (which really translates into what-
ever their author is able to code) to operate effectively.

User-level rootkits

User-level programs, orbiting out there at the lower levels of privilege, must
use the application programming interface (API) to make requests for operating-
system resources. These system calls go to the kernel indirectly, through user-
level dynamic link libraries (DLLs). The DLLs translate user-level API calls into
calls the kernel can understand. In effect, user processes must operate through
a middleman to talk to the kernel.

Now, a user-level program isn’t self-sufficient. Some of its basic needs are
provided by the operating-system kernel instead of the program itself — for
example, such functions as reading or writing to disk, displaying a window,

or printing a document. A user program must make system calls to the kernel
to request that it perform those actions. For example, if a user clicks an OK
button, Windows translates that input into a system call — and then asks the
system to act upon it. The language that Windows provides to accomplish this
communication between kernel and user program is called the application
program interface (API). To operate more efficiently, each user program builds
its own its unique table — which eventually contains the addresses of all APIs
or system functions that it needs the kernel to perform to complete it execu-
tion. This table is called the Import Address Table (1AT), which makes another
(more detailed) appearance later in the chapter. The IAT is part and parcel of a
program’s executable (EXE) file (or image) that is loaded into memory.

The indirect calls that user-level programs must use limit the effect of
user-mode rootkits (which can run only within the confines of another appli-
cation, or as separate user-level programs). Unable to interact with the kernel
directly, limited to what a user program can do, user-mode rootkits exert
only a localized effect. They are kept at arm’s length away from the kernel, in

.

13 917106 ch07.gxp 12/21/06 12:04 AM Page 156 $

’56 Part lll: Giving Rootkits the Recognition They Deserve

user program address space, and must make requests for kernel services
through system calls (see the “Hooking to Hide” section later in this chapter),
user-mode rootkits can be detected by some conventional security programs,
(and nearly all rootkit detectors) that run in kernel mode. Despite that disad-
vantage, user-mode rootkits are easier to program than their kernel-mode
cousins — and are therefore less likely to crash or hang the operating
system, so they can operate as long as a kernel-mode rootkit detector isn’t
looking for them. The trade-off (from the bad guys’ point of view) is that a
user-mode rootKit is less powerful, and a lot of work has to be done to
achieve the desired global effect. To be effective, a user-mode rootkit must
find a way to alter the tables of every executing user program.

Kernel-level rootkits

The operating system kernel is the software equivalent of the central process-
ing unit — the “brain” of the operating system, and its most basic component.
The kernel provides the buck-stops-here level of control and functionality for
all programs that run on a computer. It maintains and manages many vital
system resources and functions — such as memory, security information,
and process scheduling — and facilitates communication between software
and hardware. The kernel therefore has a global scope — access to the entire
operating system, hardware and all applications. All programs must interact
with the kernel in some way — and if a rootkit gets control there, it’s in the
driver’s seat.

Unlike user-mode rootkits that operate at Ring 3, kernel-mode rootkits that
operate at Ring 0 interact with the kernel more directly — by intercepting
native (or kernel-level) APls. The kernel has global access to every nook and
cranny of the operating system — so inside the kernel is a comfortable place
for a rootkit to be. From there, it can access any memory location and any
hardware (worse) it can substitute its own code for that of the kernel’s or
modify the critical data structures that the kernel relies on to keep track of
its activities. Kernel-level rookits can, therefore, exert a global impact on the
entire system — which makes them potentially a lot more dangerous and
insidious.

Kernel-mode rootkits install a device driver to obtain access to kernel-level
privileges. Once ensconced, the rootkit driver redirects system function calls
so its own code is executed instead of kernel code. (For more about how this
process works, see the “Hooking to Hide” section later in this chapter.)

Luckily, it’s inherently difficult to implement a kernel-mode rootkit without

upsetting the delicate balance of the system kernel. For that reason, kernel-
mode rootkits often reveal their presence by causing system instabilities or
computer crashes (especially if the rootkit has been sloppily programmed).

13 917106 ch07.gxp 12/21/06 12:04 AM Page 157 $

Chapter 7: Getting Windows to Lie to You: Discovering How Rootkits Hide ’5 7

Persistent versus non-persistent rootkits

One other essential distinction between rootkits is whether they can survive
areboot. If they can, they’re called persistent; if they can’t, they’re non-
persistent. A closer look at each of these types is the next order of business.

Persistent rootkits

In order to survive a reboot and attain persistent status, a rootkit must physi-
cally alter the contents of the hard drive. A persistent rootkit does this bit

of nasty magic by residing on the disk and adding an autostart entry to the
Registry — that way it’s loaded into memory and executed automatically
every time the computer is started. Although these physical changes to the
disk do present opportunities for detection, unfortunately many rootkits are
still undetectable to traditional malware scanners and system utilities. What
escapes attempted analysis is a range of hidden clues (more about those in
a minute) that would alert most dedicated rootkit scanners to a rootkit’s
presence.

Non-persistent rootkits

Non-persistent rootkits present even fewer detection opportunities to scan-
ners because they exist in memory only — and disappear if there’s a reboot.
Programs that merely scan physical storage media have no chance of detect-
ing a non-persistent rootkit — after all, it leaves no part of itself behind. True,
non-persistent rootkits may seem less threatening to those of us who reboot
regularly; restarting the computer should effectively eliminate the threat.
Well, it does — but there’s a catch: If the infected computer is a network
server — connected to hundreds of client computers — rebooting is typically
a much rarer event. Memory-resident rootkits take advantage of this fact, and
stick around for as long as they can. Consequently a network may harbor an
undetected infection for an extended period of time. The very fact that non-
persistent rootkits leave no physical clues makes them a lot harder to detect.

Hooking to Hide

One technique a rootkit employs to alter the normal execution path of the
operating system is known as hooking — intercepting system function calls
and adjusting their results to deny the presence of the rootkit. Hooking
diverts normal program flow, to rootkit-supplied functions instead of legiti-
mate system functions. The Windows operating system was designed to be

13 917106 ch07.gxp 12/21/06 12:04 AM Page 158 $

’58 Part lll: Giving Rootkits the Recognition They Deserve

very adaptable and flexible — which probably seemed like a good idea at the
time, but as such provides many possibilities for rootkits to “hook up” to
system resources.

In the following sections we’ll discuss how rootkits hide by attempting to
make themselves invisible to the target operating system — and we’ll give
you the skinny on the various types of hooking.

How hooking works

Both user-mode and kernel-mode rootkits employ hooking techniques to
filter the results returned by the operating system and camouflage their
existence. In effect, they get Windows to lie for them and perpetuate the
illusion that you have a clean system. Rootkit hidden files Registry entries,
processes, and ports — will be invisible to most system-analysis and scan-
ning programs. That’s because such programs rely on the data provided to
them by the operating system to produce their results. For example, if you
use (say) the Task Manager to display a list of active processes, the rootkit
processes will be excluded from what you see. The same will happen if you
try to locate rootkit files and folders using Windows Explorer. Likewise,
Regedit won’t detect any of the rootkit-installed Registry keys; Netstat won’t
see any rootkit ports. It’s like being in an alternate universe where none of
your trusty tools can actually be trusted; Windows blindly becomes a partner
to a rootkit’s subversion techniques.

The Windows operating system uses many data structures (tables) to store
and keep track of critical system information. These tables can be hooked,
replaced, and generally corrupted by a rootkit. User-mode and kernel-mode
rootkits both use hooking, but what they’re permitted to hook — and the
tricks they use — are defined by the privileges accorded to them:

v Some rootkits sport a type of built-in enemy radar. They temporarily
drop their hooks when they detect a rootkit-scanning program poking
around in their vicinity. Then no hooking abnormalities show up in the
scan results — and the rootkit remains undetected. They may possess
an uncanny intelligence — one of the newer rootkits completely disables
all tools capable of detecting it, and even blocks Web access to security
sites that provide removal tools.

v User-mode rootkits can only hook data structures (tables) in a user pro-
gram’s address space (the IAT and EAT), so the scope of their effect is
limited. They may also insert jump instructions into user-level APIs; the
result is to redirect system calls to the rootkit’s replacement functions.

13 917106 ch07.gxp 12/21/06 12:04 AM Page 159 $

Chapter 7: Getting Windows to Lie to You: Discovering How Rootkits Hide ’59

SMBER

o

v+ Kernel-mode rootkits hook tables (data structures) used by the kernel —
such as the SSST and the IDT — so a kernel-mode rootkit’s effect is
system-wide or global. (These tables and the various types of hooking
are described in the next sections.)

Knowing the types of hooks

Two types of hooks exist, including privileged hooks and unprivileged hooks.
User-level rootkits use unprivileged hooks exclusively while kernel-level
rootkits use the more efficient privileged hooks. Here’s a list that includes
the various types of hooking associated with each:

v+ Unprivileged hooks: User-mode rootkits run within the confines of user
program address space and use unprivileged hooks to redirect program
flow. The hooks are called unprivileged because they do not have Ring
0 privileges (they have Ring 3 privileges only); the rootkit exerts its
influence by operating within the memory-address space that has
been allocated to another program.

v+ API hooking: User-mode rootkits intercept the API (Application Program
Interface) calls that user programs use to communicate with the kernel
using unprivileged hooks. They hook (modify the addresses of) APls in
the Import address table (IAT) of user processes, so they point to rootkit
functions instead of the Windows API functions.

Most rootkits (both user- and kernel-mode) use API hooking to make
sure the operating system returns only filtered results, which omit any
indication of the rootkit or its payload.

User-mode rootkits can only modify tables that belong to user programs.
Each user program has its own unique IAT that it assembles to indicate
the functions it needs the kernel to perform; to be effective, a user-mode
rootkit must find a way to alter the tables of every executing user
program — and also monitor for any new programs that start up so it
can hook the relevant APIs used by those programs as well. A rootkit
doesn’t need to hook every API, only those that may expose it. For
example, it may hook the APIs that Task Manager uses to display its list
of active processes, or the APIs that are used by Windows Explorer to
display files and folders. Because it has to hook these same APIs for
every active process, user-mode rootkits are much less efficient than
kernel-mode rootkits. Kernel-mode rootkits can achieve the same effect
by hooking a single structure that all user programs use.

v+ DLL injection: User-mode rootkits use a method called DLL (Dynamic
Link Library) injection to implement unprivileged hooks. To get a better
handle on what DLL injection is, and how it’s used in unprivileged hook-
ing, check out the next section to get a closer look at what a DLL is.

.

13 917106 ch07.gxp 12/21/06 12:04 AM Page 160 $

’ 60 Part lll: Giving Rootkits the Recognition They Deserve

DLLs and the rootkits that love them

A DLL is a type of small program — often it is a building block for other
programs — called an object module. Some DLLs are application-specific
and reside in the application’s program folder; other DLLs are provided by
Windows itself — and can be shared by all programs. Windows maintains its
own collection of small shared program modules used to perform identical
system functions for all applications. These interchangeable DLLs reside in
the Windows system folder.

A larger program calls a Windows DLL program when it needs to perform

the function that the DLL provides. For example, the DLL may provide a print
function for a word-processing program, or allow you to write to (or read
from) your hard drive. Windows DLL files are not part of the program’s exe-
cutable file; instead, they’re linked in at runtime and loaded into RAM as
needed. Utilizing shared DLLs this way conserves system resources; exe-
cutable files can take up less space because they can “borrow” some of their
basic functionality from DLLs that aren’t loaded into memory until they're
needed. DLLs often take the form of drivers — and drivers are a favorite tool
of rootkits (as we shall see later in the chapter).

If an application has to use a particular version of a DLL, the application
installs that version of the DLL in its own program folder to avoid conflict
with the version provided in the Windows system folder. The application
then decides which functions it must import from the DLLs that are available
to it at runtime.

Static and dynamic DLLs as rootkit targets

Static DLLs, as opposed to dynamic DLLs, are application-specific; because
they aren’t used by other programs, they can be linked or compiled directly
into the application’s executable file. Because they are contained within a
program’s executable file when it is loaded into memory, unlike dynamic
DLLs static DLLs are not vulnerable to rootkit modification — unless the
rootkit replaces the entire DLL file on disk — but that method is easily
detectable and rarely used nowadays.

Windows uses a system called Windows File Protection (WFP) to ensure that
the DLL files in its system folder are not overwritten by different versions
supplied by application-program DLLs. This means you cannot replace the
system version with the user-program version, because Windows will imme-
diately overwrite the new third-party DLL with a bona fide version that it
maintains in a system backup folder.

13 917106 ch07.gxp 12/21/06 12:04 AM Page 161 $

Chapter 7: Getting Windows to Lie to You: Discovering How Rootkits Hide ’ 6 ’

The prize DLLs at kernel and user levels

The Kernel32.d11 and User32.d11 files are crucial; they supply system
functionality to user programs. For example, Kernel32.d11 contains APIs
that manage memory, handle program interrupts, and take care of input/
output tasks. (Lots of potential mischief to be done there.)

You may become aware of the Kernel32.d11 operation when an invalid
page fault error or kernel error message is generated. The Windows
dynamic link libraries are loaded into a reserved area of memory at system
startup. Because user programs are not allowed to access the kernel memory
space directly; they have to use API calls when they need to perform a func-
tion that only the operating system can provide. This difference in access
maintains the concept of privilege — user programs have no direct contact
with the kernel.

Kernel32.dll, User32.d1l1l, Gdi32.dll, ws2_32.d11, Advapi32.dll,
Wininet.dll, Rasapi32.dll, Urlmon.dll, and Netapi32.dll all
contain user-level APIs that can be called to execute specific functions for
user-level programs. Because the APIs must be retrieved from user-level DLLs
that are not part of the application, these DLLs and their APIs are considered
to be “imported.” The functions within these imported user DLLs will in

turn call the kernel or native APIs required to process a given user-program
request. Ntd1l1.d11 is a bit of an oddball; it provides a native API interface
directly to user-mode programs, even though Ntd11.d11 still resides in the
portion of memory reserved for user programs. User-mode calls toNtd11.d11
APIs cause Ntd11.d11 to execute a SYSENTER (analogous to generating an
interrupt in older versions of Windows) which immediately transfers control
to the kernel. It is in the kernel that the APIs are processed by executing the
appropriate system services — so Ntd11.d11 basically functions as a user
program’s gateway to the kernel.

An application maintains a pointer (which is just an address) to each
imported user-level APl it needs within a special data structure called the
Import Address Table (IAT). The IAT enables an application program to locate
and execute a system function whenever it needs it, and by handling it this
way, Windows makes it operations more streamlined and efficient. The IAT
may contain entries that point to any of the DLLs we’ve listed here. An appli-
cation assembles its IAT before runtime when it knows the name of the APIs
it needs — but it doesn’t yet know their addresses. What it does provide are
the names of the APIs that it needs, along with the names of the parent DLLs
that supply them. Windows uses that information to load the required DLLs,
and then it is Windows that computes and fills in the program’s IAT with the
correct APl addresses.

13 917106 ch07.gxp 12/21/06 12:04 AM Page 162 $

’ 62 Part lll: Giving Rootkits the Recognition They Deserve

In reality (say, program executables), each user
DLL has an IAT for any APIs it may be importing
from other DLLs suchasntdl1.d11.Windows
checks the IAT of each user-level DLL to see if it's
importing any functions from any other DLL. If

More on DLLs

it is, then Windows will load that DLL and over-
write the IAT of the calling DLL with the actual
addresses of the APIs in the called DLL, using the
EAT of the called DLL. If called DLL is ntd11l.
dail, itwill already be loaded into memory.

A rootkit is able to fool Windows by overwriting the address information in a
program’s IAT with address information that points to its own code, thus
mimicking a variation of this last step that Windows has already completed. It
accomplishes this feat in the following way: A user-mode rootkit substitutes
its own APIs for the normally imported ones by injecting its own DLL into the
program’s address space. The rootkit can then selectively hook the IAT by
replacing legitimate pointers in the IAT with pointers to its own functions.
When a user program calls the one of these hooked APIs, execution is redi-
rected to the rootkit’s replacement function (located in the rootkit’s injected
DLL, so named because the rootkit injects it into a user programs address
space). The rootkit need not hook every API, but only those APIs that are
capable of exposing it.

In actual practice, there is another table called the Export Address Table (EAT)
that presents another user-mode API hooking opportunity. Unlike the IAT,
which is located within a user program’s executable file, the EAT is located
within the imported DLL itself. An imported DLL’s EAT stores pointers to the
functions that are exported to user applications already loaded into memory:.
These entries correspond to those in the IAT of the user program, except for
one difference — they contain actual address information for the APIs the
application program needs to import. The EAT information in the DLL is used
by Windows to fill in the user program’s IAT with real addresses (as opposed to
just names). The EAT is vulnerable to rootkit hooking, and if the EAT is hooked,
the same address information will be duplicated in the user program’s [AT
because that’s what the IAT information is derived from.

To help you pull all this information together we’ll first summarize the
sequence of actions that take place during normal program execution:

1. When an application program is executed, Windows loads it into
memory.

13 917106 ch07.gxp 12/21/06 12:04 AM Page 163 $

Chapter 7: Getting Windows to Lie to You: Discovering How Rootkits Hide ’ 63

2. Windows checks to see if the IAT of the program is calling any APIs.
3. If it is, Windows loads the DLLs specified in the program’s IAT.

4. Windows then computes the real API addresses using the information
stored in the EAT of each imported DLL.

5. Windows overwrites the program’s IAT with the actual API addresses.

Now we’ll look at a practical example (using the FindNextFile API) that shows
how a rootkit might use EAT hooking to make sure its files stay hidden:

1. First, the rootkit scans memory for DLLs that export the
FindNextFile API.

2. Because FindNextFile is in Kernel32.d11, this really means it scans
memory for all instances of Kernel32.411.

3. The in-memory Kernel32.d11's EAT will contain the address of
FindNextFile and the rootkit will overwrite that address with the
address of a replacement function located inside the rootkit’s
injected DLL (which is already loaded by the rootkit).

The influence of a user-mode rootkit’s unprivileged hooking mechanism is
localized. That’s because a user-mode rootkit can only modify the data struc-
tures available to user programs — and they must inject code into each new
process that starts in order to hook any APIs that might reveal its presence.
Even though all user-level APIs eventually get converted to native (kernel)
APIs, the rootkit can only achieve it goals using level of indirection — and
that restricts the scope of unprivileged hooking.

Kernel-mode rootkits, however, overcome this restriction by using privileged
hooks (more about those a little later in the chapter) to directly modify the
data structures that the kernel accesses. The reason is simple: Kernel data
structures are used system-wide — so privileged hooking allows kernel-mode
rootkits to exert a global effect.

Inline Hooking: A more devious variation on a theme

Beside IAT and EAT hooking, there is another form of hooking used by both
user-mode rootkits and kernel-mode rootKkits: inline function hooking. User-
mode and kernel-mode inline function hooking differ only in regard to what is
hooked — user-mode rootkits inline hook APIs imported from user mode
DLLs, while kernel-mode rootkits inline hook the native APIs functions that
reside in kernel space (see the “Kernel Inline Hooking” section later in this
chapter).

13 917106 ch07.gxp 12/21/06 12:04 AM Page 164 $

’ 64 Part lll: Giving Rootkits the Recognition They Deserve

An example of DLL injection at work

Here's where we illustrate how a rootkit might
use DLL injection and APl hooks so it can fake
out both the operating system and the user.

Suppose a userinvokes a search programto see
whether a particular file or folder is present on
the local hard drive. The search program uses a
couple of Kernel32 APls — FindFirstFile
and FindNextFile—to conductits search.
Now, suppose the search program is rummag-
ing around in a folder that contains a rootkit file.
The rootkit wishes to remain hidden, so it
injects a DLL into the address space of the file-
search program, and replaces (patches) the
kernel32.d11 addresses with addresses
contained within its own injected DLL. That

way, when the FindFirstFile and
FindNextFile APIs are called, the execu-
tion is diverted to the rootkit-supplied functions
in the injected DLL instead of the legitimate
kernel32.d11 functions.

The malicious code lurking in the rootkit DLL for
these APls ensures that the rootkit file is not
reported and remains hidden. One of the meth-
ods a rootkit can use to accomplish that is
by having the replacement function simply call
the FindFirstFile and FindNextFile
APls once again, and then pass control back to
kernel32.d11. This makes the API skip the
rootkit file and jump to the nextfile, so any search
results returned will exclude the rootkit.

Inline user hooks overwrite the actual API function code implemented by
imported DLLS (not just a pointer), leaving the IAT and EAT unaltered.
Inside the hooked DLL, the first line (usually) of the actual code of an APl is
overwritten with a jump (JMP) instruction. The JMP jumps or redirects exe-
cution to a replacement function inside the rootkit DLL.

Some sneaky rootkit programmers have attempted to insert the JMP instruc-
tion further down in the API code, thereby defeating rootkit detectors that

only examine the API’s first instruction to establish whether an inline hook is
present. Inline hooking is much more difficult to detect than API hooking.

A program called APl HookCheck by SIG"2 can detect all types of user mode
API hooking including inline function hooking. APl HookCheck compiles a list
of any API addresses from the IAT and EAT that lie outside the memory space
of imported DLLs. The program then generates a log composed of these sus-
picious entries. ApiHookCheck looks for IAT and EAT patching, as well as
inline function hooking. You can find more information (and a sample log) at
this APl Hook Check download link:

www.security.org.sg/code/apihookcheck.html

13 917106 ch07.gxp 12/21/06 12:04 AM Page 165 $

Chapter 7: Getting Windows to Lie to You: Discovering How Rootkits Hide

165

Thread injection

User-mode rootkits can also use a method called thread injection to gain entry
into a user program’s address space. Simply put, a program consists of a
series of steps that are executed in sequential order to complete some prede-
termined goal. A program step may call for a process to be executed. Each
individual process is composed of smaller functional units called threads. A
rootkit can insert its own stowaway thread into a user process to ensure that
its code gets executed along with that of the user program. The APl used to
do this is called CreateRemoteThread. This injection method requires careful
monitoring of starting and stopped processes to properly hide the rootkit
components.

Applnit_DLLs injection

Malware writers can use a relatively easy technique to inject code into nearly
every user-mode process: Applnit_DLLs injection — thereby coming pretty
close to achieving the scope of a kernel mode rootkit. Most user processes
link to User32.d11, and when they do, any DLL(s) specified by the Applnit_
DLLs Registry value are also loaded. The Applnit_DLLs is defined by the fol-
lowing Registry key:

HKLM\ SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Windows\\
AppInit_DLLs

The Appinits_DLLs provides a very convenient method of introducing a mali-
cious DLL that can affect almost every user process. All the bad guys’ code

has to do is change one Registry key value and create an infective DLL that is
then injected into every running process that normally links to User32.411.

A trojan that uses Applnit_DLL injection

Though not a bona fide rootkit, A Cool Web
Search (CWS) variant was one of the firstinfec-
tions to utilize ApplInit_DLLSs injection in early
2003. The particular CWS variant involved was
dubbed “the About:Blank” Hijacker; it used this
technique to hide its code and continually rein-
fectusers. The infection also installed a Browser
Helper Object (BHO) — a small program that
plugs into your Web browser and directs its
behavior. The name of the hidden CWS DLL file
in the Applnit_DLLs value was invisible to
Regedit, and could only be “seen” by using an
alternative Registry editor called Registrar Lite,

or by examining the exported Windows Registry
key. The fact that the DLL was difficult to see
made it a lot harder to remove. How can you
remove a file you don’t know the name of? The
CWS-hidden DLL also changed its name after
several reboots or after botched removal
attempts — so even if it was successfully iden-
tified, a reboot it might cause it to adopt a
completely new name. This practice of using
morphing file names has since been adopted by
several rootkits, including Apropos, Gromozon,
and other stubborn malware including the
Vundo trojan (which has a rootkit variant).

.

13 917106 ch07.gxp 12/21/06 12:04 AM Page 166 $

’ 66 Part lll: Giving Rootkits the Recognition They Deserve

SMBER

A,

Windows did not intend for the Applnit_DLLs feature to be used for malicious
purposes. Some very useful programs such as antivirus software and software
debuggers use Applnit_DLLs injection constructively. In fact, the Applnit_DLLs
value was put to very good use by the security researcher, lifak Guilfanov,
when he developed the WMF Metafile HotFix, which utilized Applnit_DLLs
injection to patch the zero day WMF Metafile vulnerability before the Microsoft
patch was released.

Privileged hooks

In Windows NT systems (Windows NT 3.1 and later), an application program
can operate in kernel mode by using a kernel-level device driver — a small
program (implemented by launching a Windows service) that gives user pro-
grams unrestricted access to memory, hardware, and CPU privileged instruc-
tions. To a rootkit, that kind of access is as irresistible as a pirate’s treasure
chest — but the only way to get it is to use privileged hooks — which operate
much like unprivileged hooks (described earlier in this chapter), with one
major difference: Privileged hooks alter the data structures or tables used by
the kernel itself. Because all programs and processes need to access kernel
functions, modifying a kernel data structure affects all running programs.

NT stands for New Technology, and the term N1-based Windows systems
encompasses Microsoft’s family of 32-bit multitasking Windows operating
systems, the first of which was Windows NT 3.1 introduced in late 1992,
Windows NT 3.x and 4.0 Workstation and Server versions, Windows 2000,
Windows XP, Windows Server 2003, and now Windows Vista.

Installing drivers as rootkits

Installing a driver is a legal route that user programs take to get into the
kernel, but it is also one that blackhat rootkit authors have maliciously
exploited to infect computers with rootkits.

A driver doesn’t have to actually represent a physical device (though many
do); to a rootkit, it’s a method of obtaining kernel-level privileges rather than
a means to operate a specific piece of hardware such as a printer or mouse.

By definition, device drivers operate in kernel mode. They have privileges
at Ring 0 — as high on the food chain of privileges as you can get — and
that means only a privileged hook can bend the kernel’s functions to suit

a rootkit’s purpose. So a kernel-mode rootkit gains control of the kernel

by using a device driver that runs as a Windows service. You're probably
familiar with many of the services that come preinstalled with the Windows

13 917106 ch07.gxp 12/21/06 12:04 AM Page 167 $

Chapter 7: Getting Windows to Lie to You: Discovering How Rootkits Hide ’ 6 7

a\J

operating system. These processes run in the background and accomplish
many tasks behind the scenes — such as Windows Automatic Updating and
Event Logging.

To see a list of Windows services, you can access the Services Console by
choosing Start => Run, typing services.msc into the Open: field, and pressing
Enter. You will notice that there are both Microsoft and application program
services listed. Naturally, any fully functional rootkits that might exist in your
system won'’t be listed; they’ve made sure that the Services Console will
ignore them.

Why malware writers use device drivers

Malware writers have determined (accurately) that loading a kernel-mode
driver into a system gives them nearly unlimited access. No wonder the pre-
ferred rootkit methodology is to load a device driver so the rootkit can inter-
cept and redirect native API calls — and thereby exert a global impact on the
entire system. A kernel-mode rootkit can overwrite the basic data structures
that the operating system uses to assess the system status — so that those
structures fail to report anything that may expose not only the rootkit but
also its malware-related processes, files, directories, ports, and Registry
entries. Result: The whole infected operation is hidden to a degree that user-
mode rootkits rarely match. (Not to mention that user-mode rootkits can
easily be ferreted out by rootkit detectors running in kernel mode.)

How installing a device driver allows easy kernel access

The Windows OS treats device drivers as services — and requires verification
of digital signatures for device drivers to confirm that a driver is not only
compatible with Windows but also hasn’t changed since it was last tested.

If either one of these conditions isn’t met, Windows triggers a user alert —
but Windows leaves it up to the users to decide how they want to handle an
unsigned driver. For enhanced security, 64-bit versions of Windows Vista
depart from this policy and prevents any unsigned device drivers from load-
ing. This is one of the security features implemented in 64-bit Vista to keep
rootkits out of the kernel.

Currently, rootkit coders can bypass Windows driver verification by writing
a program that relies on low-level API calls to install their driver. This sup-
presses the alerts that are normally triggered when a program loads an
unsigned driver. Pretty sneaky!

Developing a kernel device driver is accomplished by creating a user-mode
application to complete that task. Microsoft actually supplies a software-
development kit (SDK) to help legitimate programmers who are interested in
coding kernel device drivers. Three consistencies make this process easier:

13 917106 ch07.gxp 12/21/06 12:04 AM Page 168 $

’ 68 Part lll: Giving Rootkits the Recognition They Deserve

v Kernel device drivers always follow the same naming convention; they
all have a . sys file extension. For example, a device driver might have a
name like mydriver.sys.

v A file with a .DLL extension differs from a .sys file in only one respect:
the specific DLL files it links to.

v SYS files always link to ntoskrnl . exe (short for NT operating system
kernel) and often link to hal.d11; Win32 Portable Executable (PE) DLL
and EXE files link to Kernel132.d11 and Ntdl1.d1l1l. Win32 PEs may
also link to other system drivers depending on the type of support
that’s required for the Windows platform being used (some examples:
Ndis.sys provides network driver support and Wmilib.sys provides
support for Windows Management Instrumentation).

Registering a driver

After a driver is coded, it must be registered as a system service and then
started to complete the installation process. Of course, coding the driver
source code is the really complicated part. If that’s done improperly, it can
crash the system — and the infamous blue screen of death (BSOD) is a telltale
sign of the system that many kernel-mode-rootkit-infected computers experi-
ence. It stems from the difficulty involved in coding a kernel device driver.

More about drivers

If you're curious to learn more about the process of developing a kernel
device driver, refer to these links:

v Windows NT Kernel Programming — Introduction to Device Drivers:
www.catch22.net/tuts/kernell.asp
v Instructions on creating DLLs:

www . thevbzone.com/1_dll.htm

Hooking the System Service Descriptor Table (SSDT hooking)

Like user programs, the kernel also maintains its own set of tables that it uses
to carry out system functions, interact with hardware devices, and manage
its own resources. In fact, every system call from a user program (via a user-
level API) is eventually translated into an entry in a data structure that the
kernel uses to locate the functions it needs to perform — the System Service
Descriptor Table (SSDT). The kernel is where Windows actually performs the
work that completes user-program requests; the kernel uses the SSDT like the
index in a book to efficiently find the instructions it must perform. Each entry
in the SSDT points to a set of instructions that performs a requested user pro-
gram function. The functions themselves are called system services, and they
are located in the NT operating system kernel, aka ntoskrnl.exe.

.

13 917106 ch07.gxp 12/21/06 12:04 AM Page 169 $

Chapter 7: Getting Windows to Lie to You: Discovering How Rootkits Hide ’ 69

Now, kernel-mode rootkits alter kernel data structures or tables — and most
of them hook the SSDT. Because all system calls eventually funnel down to
functions that the SSDT points to, modifying the entries in this one kernel
data structure enables a rootkit to affect all user programs that access it. It’s
a very powerful and efficient approach; — and if it’s done correctly, the user
should have no idea that the rootkit is there.

The SSDT stores the entry-level addresses of kernel APIs — and being able to
modify the pointers in this table is like winning the lottery to a rootkit. No
fiddling around with pointers to user-mode APIs here; kernel-level control is
the goal.

A rootkit hooks the SSDT by overwriting the addresses in that table with
pointers to rootkit functions, instead of legitimate system services — a
process known as kernel patching or native APl hooking. Then, when a call is
made to execute a system service that the rootkit has patched, the service
dispatcher retrieves and invokes the service that the patched pointer directs
it to — a which just happens to be a rootkit function (located within the root-
kit driver), of course. Because patching the SSDT affects all user processes that
reference that structure, it is commonly referred to as installing a system-wide
hook or a global hook.

Installing a global hook is not only the domain of rootkit programs but many
security programs also go about their business by installing global hooks to
intercept and monitor key kernel APIs — so it is important to identify the
source of the global hook when attempting to decipher security program
alerts that notify you of a global hook installation.

Though many kernel-mode rootkits function by hooking the pointers to
native APIs in the SSDT, this is an older technique that is pretty much univer-
sally detected by anti-rootkit programs. So a more sophisticated technique,
known as direct kernel-object modification (DKOM) has become the new,
preferred methodology for advanced rootkits (more about that in the

“Direct kernel-object manipulation” section later in the chapter).

There are over 200 Native APIs in ntd11.d11 and most of them are undoc-
umented. They all begin with an Nt prefix, but when these same APIs are
exported, the names of the functions change — an Nt prefix is swapped for a
Zw prefix— so each single ntd11.d11 function is referred to by two names.
For example, the native APl in ntd11.d11 that opens or creates a Registry
key is called NtCreateKey, but when that same function is exported by
ntdll.dll,itis called zwCreateKey. The Metasploit (a Web site that pro-
vides resources to intrusion-testing researchers) maintains a list of the native
API entries indexed by the SSDT (aka the System Call Table). You can find it
at the following URL:

www.metasploit.com/users/opcode/syscalls.html

.

13 917106 ch07.gxp 12/21/06 12:04 AM Page 170 $

’ 70 Part lll: Giving Rootkits the Recognition They Deserve

Kernel inline hooking

Both user-mode and kernel-mode rootkits can actually overwrite user-mode
API and kernel-function code, respectively, via a technique called inline function
hooking. We’ve already described how user-mode inline hooking works earlier
in the chapter. Kernel-mode rootkits also use inline function hooking — but
kernel-mode inline hooking involves altering the code that implements
system services in the kernel (Ntoskrnl.exe). The rootkit hooks a system
service by adding a jump instruction to the system service code (pointed to
by the SSDT). When the jump instruction is executed, it immediately redi-
rects processing to a rootkit-supplied function. What happens next varies,
depending on what the rootkit code says to do — when the rootkit code is
executed, it may duplicate the original legitimate kernel code but filter the
results — or it may pass control back to the original legitimate kernel func-
tion, allow it to complete its work satisfactorily, and then bounce control
back to the rootkit function, which then filters the results. Either way, the pri-
mary objective is to allow the function to process normally while excluding
evidence of the rootkit. Blackhats tend to prefer this technique over hooking
the SSDT or IDT (discussed next) because inline function hooking at the
kernel level is harder to detect than SSDT hooking — but it’s also harder

to implement.

There are a few rootkit detectors that can detect kernel inline function
hooking, and two of the programs that are able to do that, namely Gmer and
DarkSpy, are included on the CD. (They are discussed in Chapter 9 and in the
Appendix.)

SYSENTER hooking

SYSENTER hooking is so named because it hooks the entry point to the

SSDT — the crossover from user mode to kernel mode. By hooking this junc-
ture, a rootkit can filter all system calls without patching the SSDT. A rootkit
does this by overwriting the pointer to the System Service Dispatcher with

a pointer to code in its own driver. This way, whenever a user-level API (and
subsequent SYSENTER) is called, the rootkit decides whether it should direct
execution to a replacement function (to stay hidden) or let the real system
service in the kernel handle it. Probably, because so few anti-rootkits programs
were able to detect it, SYSENTER hooking was recently used very success-
fully by a new rootkit dubbed pe386 (more about pe386 in Chapter 12).

Replacing the SSDT

Another interception technique is a bit more drastic: to actually replace the
SSDT and redirect all system calls to the “new” SSDT, which is actually a copy
of the real SSDT with additional pointers to new system services appended.
When this approach is used by a rootkit, as you might expect, the new addi-
tions would reference rootkit services (in the rootkit driver) rather than legit-
imate kernel services.

.

13 917106 ch07.gxp 12/21/06 12:04 AM Page 171 $

Chapter 7: Getting Windows to Lie to You: Discovering How Rootkits Hide

é‘?“

gMBER

A variation of this technique is used in a beneficial way by some antivirus
providers to monitor and intercept actions that could pose a threat to user
systems.

Hooking the Interrupt Descriptor Table (IDT)

Kernel-mode rootkits can also modify the Interrupt Descriptor Table to alter
the execution of programs. This technique works because an interrupt is gen-
erated when either a hardware device or program requests CPU time while
another program is executing; they have to take turns. For example, if you've
scheduled an anti-spyware scan for a specific time, a software interrupt may
be issued when that time arrives. A printer may issue a hardware interrupt so
it can execute a print job.

Naturally the OS has to keep track of what it’s doing and what it’s interrupt-
ing; the Interrupt Descriptor Table is a system data structure that contains
pointers to Interrupt service routines (ISRs). Rootkits can replace the pointers
to ISR with pointers to their own code.

When an interrupt is triggered, program flow is returned to the operating
system, which then executes an appropriate Interrupt service routine — and
we’re back to services, a known rootkit target (as described earlier in this
chapter). If the Interrupt Descriptor Table has been hooked and doctored, then
an interrupt triggers and executes a rootkit routine instead of a normal ISR.

Using Even More Insidious Techniques
to Hide Rootkits

Technology improves by its nature; rootkits are no exception. Besides hook-
ing, kernel-mode rootkits have newer and stealthier alternative technology
with which they can avoid detection — in particular, direct kernel-object
manipulation (DKOM). The following sections describe this alternative
approach to rootkit technology.

Direct kernel-object manipulation

Since kernel-mode hooking can be detected by several rootkit-detection pro-
grams, a newer — and stealthier — alternative to hooking is being used in the
most advanced kernel-mode rootkits. This new technique is called direct
kernel-object manipulation or DKOM. As we’ve discussed already, obtaining
administrative privileges is paramount to a rootkit. Running processes inherit

.

171

13 917106 ch07.gxp 12/21/06 12:04 AM Page 172 $

’ 72 Part lll: Giving Rootkits the Recognition They Deserve

their privileges from the user accounts they are associated with. DKOM

can circumvent limited user privileges by selectively elevating the tokens
(security objects that determine privilege) associated with rootkit processes
(or with any process, for that matter) so they are equivalent to those of the
administrator. That comes in handy if your aim is disabling a firewall, dis-
abling anti-malware scanners, or installing a driver. DKOM even lets a rootkit
process evade standard system monitors such as the Event Viewer by
changing the group that process is identified with — a rootkit process can
inconspicuously blend in by appearing belong to the system. No wonder the
most sophisticated kernel rootkits forego hooking altogether and opt to use
DKOM — or combine the two — to achieve their stealth.

DKOM enables kernel-mode rootkits to modify kernel structures that exist in
memory — such as lists of active processes, of threads (individual process
components), and of loaded drivers. Normally the kernel uses such lists to
keep track of the information it must process — and they present additional
opportunities for rootkit deception. Advanced rootkits can use DKOM to
manipulate these lists, erasing the traces of untoward activity.

Here are some signature characteristics of DKOM:

v DKOM is different from hooking because the kernel data structures
themselves are modified, not just table entries. Many advanced kernel-
mode rootkits use this technique to hide active processes and drivers
more effectively from rootkit-detection programs.

v DKOM can prevent you from seeing a suspicious rootkit process because
you won’t even know the rootkit process is executing. Processes can
also be hidden by hooking APIs (as described earlier in the chapter), but
even kernel hooking is a technique that most anti-rootkit programs can
detect very easily (with the exception of inline function hooking). DKOM
can very successfully hide rootkit processes from many rootkit detec-
tors that are normally capable of detecting them.

v+ One of the objects manipulated by DKOM, is a data structure the kernel
maintains called the Process List. The Process List is composed of a
linked list of Executive Process Blocks or EPROCESS blocks. Each
EPROCESS block represents an active process in memory. An EPROCESS
block contains unique identifying information about its respective
process, including a pointer to the previous process and a pointer to
the next process, in the list. The pointers allow the list to be read out
of sequence — by following the pointer to the “next process” in each
EPROCESS block. A rootkit using DKOM can manipulate these pointers
so a rootkit’s process ERPROCESS block is unlinked from the list. This
effectively makes Windows skip the rootkit process when assembling
the list of active processes. Suddenly the rootkit process “isn’t there.”

13 917106 ch07.gxp 12/21/06 12:04 AM Page 173 $

Chapter 7: Getting Windows to Lie to You: Discovering How Rootkits Hide 7 73

Figure 7-1 illustrates how a rootkit uses DKOM to hide a process from
Task Manager or even an anti-rootkit program incapable of detecting
DKOM of the Process List. By rearranging the pointers in the Process
List, the rootkit EPROCESS link is excluded from the list of active

processes.
PROCESS LIST
Rootkit
EPROCESS EPROCESS EPROCESS
NEXT —— NEXT —— NEXT
PREVIOUS X PREVIOUS X PREVIOUS
PROCESS LIST
After DKOM
Rootkit
EPROCESS EPROCESS EPROCESS
\ e
NEXT ~=— NEXT NEXT
PREVIOUS m PREVIOUS
Figure 7-1:
Using
DKOM to
hide a
process.

13 917106 ch07.gxp 12/21/06 12:04 AM Page 174 $

’ 74 Part lll: Giving Rootkits the Recognition They Deserve

\\3

Now here’s a strange twist that works in a rootkit’s favor — as long as a
process is already active, removing a process from the Process List doesn’t
prevent it from executing. (Devious, isn’t it?) That’s because another data
structure — the process thread list — is the one that is actually consulted
for process scheduling. Processes are executed by running the individual
components that the processes are composed of — its threads — and a
single process can contain multiple threads. However, the Process List is
what Task Manager and other Process viewers refer to when they assemble
the list of active processes. If a rootkit manipulates the Process List to exclude
its own processes, then its processes may appear to be invisible — but they
will still be executing behind the scenes.

Klister, a utility developed by Joanna Rutkowska, can detect rootkits that use
DKOM to hide their processes from the Process List. Klister can be down-
loaded here:

www.invisiblethings.org/tools/klister-0.4.zip

Trojanized utilities

The earliest UNIX rootkits were much simpler than today’s super-stealthy
versions, and what their authors did was replace system files (utilities)

with counterfeit copies of their own. These new (trojanized) utilities were
designed to perform their normal functions while secretly hiding the rootkit.
To use a parallel example relevant to Windows users, rootkits might replace
Task Manager’s executable file (caskmgr . exe) so that all active processes
except those belonging to the rootkit were listed.

Direct replacements of system utilities are easily detectable (as we shall see in
Chapter 9) and pretty easy to reverse by installing a new copy of the affected
executable. Today, malware writers may try to replace an authentic file with
their own, but this is difficult to do to system files because of Windows File
Protection, which we discuss earlier in this chapter. Even if Windows File
Protection could be bypassed, then an antivirus or anti-trojan should be able
to pick up the bogus files in a routine scan. Another obstacle to replacing
critical system files with a trojanized version is the difficulty of maintaining
the original functionality of the replaced file. Since Windows is not an open-
source operating system, all of its code is proprietary. It is not an easy task
to write rewrite the code of an essential system file so it incorporates both
normal and rootkit functionality — doing so might cause a system crash.

13 917106 ch07.gxp 12/21/06 12:04 AM Page 175 $

Chapter 7: Getting Windows to Lie to You: Discovering How Rootkits Hide ’ 75

Even so, user-mode rootkits may make changes to critical system files by
replacing programs with trojanized utilities of their own, or having the files
depend on trojan DLLs that run within the context of a system process. A
process called checksum analysis can help you discover trojanized utilities;
see Chapter 9 for more information on checksum analysis.

Looking into the Shady
Future of Rootkits

Some rootkits are actually on the side of the white hats — for now, anyway —
because they are original laboratory creations, often designed by rootkit
researchers for beneficial purposes. They're categorized as non-public or
(well, yeah) laboratory-based — which means they’ve been developed as
research tools and used to gain insight into new techniques that future root-
kits could possibly use to hide. Such proof-of-concept rootkits are used to
develop tools or strategies to combat potential techniques before a malicious
rootkit starts using them in the wild. Three non-public rootkits that fall under
this classification are Shadow Walker, FUTo, and Subvirt. Here’s a look at how
these three rootkits incorporate new hiding techniques — and how they’ve
taken rootkit detectors to a whole new level.

Hiding processes by doctoring
the PspCidTable

An even newer method of process hiding has been built into the laboratory
rootkit called FUTo. FUTo was christened so by its author, Peter Silberman,
because it is the successor to the publicly available rootkit FU (or FU II, which
became FUTo). Even though most of these laboratory rootkits were developed
to challenge and improve anti-rootkit tools, many are available for download on
the Web, which means tweaked versions may find their way into distributed
malware. Consequently, a version of FU is used in the “Aim Virus” (a misnomer)
rootkit, the Fanbot worm, and several spyware/adware programs — proving
you don’t have to be a kernel programmer to bind FU to a threat.

Besides hiding processes by DKOM of the Process List, FUTo alters the only
data structure used by the operating system to keep track of both active
processes and threads — PspCidTable. If a rootkit hides a process using
DKOM of the Process List both IceSword and BlackLight are able to detect it,
but neither can successfully detect FUTo’s added method of process hiding.

13 917106 ch07.gxp 12/21/06 12:04 AM Page 176 $

’ 76 Part lll: Giving Rootkits the Recognition They Deserve

<®

Until FUTo made an appearance, restoring the Process List to its original
state was sufficient to reveal hidden rootkit processes. No more; FUTo intro-
duced a new approach to hiding processes by modifying the PspCidTable; it
also created a need for a detection utility that can target that technique. That
tool is RAIDE, and we discuss it in Chapter 9.

DarkSpy and the GMER rootkit detection programs included on the CD are
capable of detecting both FU’s and FUTo’s method of hiding processes and
drivers.

A very simple and quick freeware utility called kproccheck can detect root-
kits that hide their processes using both of FUTo’s methods. Kproccheck is
one of three very effective command line tools developed by the Security
Information Integrity Group (SI"G), and we will be talking about another one
of their programs (AntiHookExec) in Chapter 9. Kproccheck may be down-
loaded here:

www.security.org.sg/code/kproccheck.html

Hooking the virtual memory manager

A new laboratory creature uses virtualization to make itself invisible to any
detection strategies employed from within the target computer. Virtualization
is a general technique used to create a separate simulated environment (com-
plete with operating system) within the host computer. A virtual machine is
like a “machine within a machine,” and it behaves and functions separately
and independently. A program launched within a virtual machine is normally
only aware of the virtual environment that surrounds it, but it views that
world as the entire computer.

This new rootkit technique uses virtualization to install itself at a level below
that of the host operating system. Because it sits at a level that is lower than
the host computer’s real operating system (effectively right above the hard-
ware), it is able to see not only its own environment, but everything that hap-
pens on the computer. However, booting from an external operating system
can successfully detect this virtual-machine-based rootkit and its associated
malware because an external operating system is able to see the untainted
view of the host machine, including the virtual-machine-based rootkit.
Shadow Walker is a non-public, in-memory rootkit that works by hooking

the Virtual Memory Manager (VMM). ShadowWalker is discussed in detail in
Chapter 12.

13 917106 ch07.gxp 12/21/06 12:04 AM Page 177 $

Chapter 7: Getting Windows to Lie to You: Discovering How Rootkits Hide ’ 77

Virtual-machine-based rootkits

Another advanced rootkit technique developed in the laboratory is the
virtual-machine-based rootkit (VMBR). Microsoft and the University of
Michigan recently coauthored a VMBR that is essentially undetectable by
any method utilized from within the target computer. The project is labeled
SubVirt, which is a moniker derived by combining portions of the words
subvert and virtual. The term subvert is often used to describe a rootkit’s abil-
ity to trick the operating system into believing it doesn’t exist, which is why
Greg Hogland and Jamie Butler decided to call their book Rootkits: Subverting
the Windows Kernel — and also why we have tried to avoid using that word
too often in this book.

SubVirt installs and runs a virtual machine monitor (VMM) in its own area
of disk space that is totally undetectable and off-limits to the host operating
system. This VMM behaves like a self-sufficient machine (complete with its
own operating system) that controls and keeps tabs on what’s going on the
entire computer — hence the term monitor.

Yet, because it effectively operates at a level below the host kernel, SubVirt
still has access to all the layers above it — but remains totally inaccessible to
the host operating system. The rootkit also places the original host operating
system inside a virtual machine. After the host operating system is isolated
in this way, its security tools become totally ineffectual against the VMBR.
That means any malware that the VMBR installs inside the virtual machine
monitor — or any newly spawned Virtual Machines the VMBR creates to
further compromise the infected computer — are also invisible to the host.

But even this creature has a weakness: The VMBR must find and exploit a
host vulnerability that will enable it to alter the master boot sequence. The
VMBR has to load the virtual machine before the host operating system
loads, so it can sit at a level that underlies the host’s operating system. The
laboratory VMBR experiment assumes the presence of such host vulnerabil-
ity (a premise that critics of SubVirt claim is quite difficult to implement).

In the lab, SubVirt successfully installed itself and ran four malicious services
that targeted host resources. Since the SubVirt exists at a level in between
the hardware and the host operating system, an appropriate countermeasure
has been proposed: incorporating detection into a hardware chip that
enables the host computer access to the virtual machine files.

An easier disinfectant approach would be to boot from an external operating
system contained on an alternate medium (such as a CD-ROM or USB flash
drive). The external operating system would offer an uncompromised view

13 917106 ch07.gxp 12/21/06 12:04 AM Page 178 $

’ 78 Part lll: Giving Rootkits the Recognition They Deserve

of the entire target computer. As such, it would present an effective way to
detect and remove malware — using conventional scanners resident on the
external medium.

The SubVirt rootkit was successfully installed and run on a Linux platform
using VMWare, and on a Windows platform using Microsoft’s VirtualPC emu-
lation software.

k‘&N\BEH It is important to emphasize that a VMBR is not about exploiting virtual
& machine vulnerabilities. Using VMWare or VirtualPC does not make you a
d more likely target for a VMBR; it actually makes you less vulnerable to VMBR

exploits (as discussed in Chapter 6). An operating system that’s already run-
ning within a user-installed virtual machine would always operate at a level
below a VMBR — which would render it less prone to exploit than the normal
physical operating system. That’s because the lowest layer can see every-
thing above it — while remaining invisible to all the layers above it. Whatever
entity establishes itself at the lowest layer — malware or the host operating
system — has a distinct advantage and occupies a position of control.

Some critics have described virtual-machine-based rootkits as impractical

to implement in the real world. One reason for that is that virtual machines
place quite a drain on system resources — particularly memory, which would
be difficult for a user to miss. The disk space required is also a consideration,
since SubVirt comes with its own operating system in tow. Still, as hardware
and memory advance, this may not always be the case. Complexity of instal-
lation is another factor that may be prohibitive. Even so, the SubVirt authors
contend that their model presents a viable future threat. Without a doubt,
virtual-machine-based rootkits would be extremely dangerous, were they to
become a reality outside the lab.

