

 < Day Day Up >

What Is the Kernel?

Before we get ahead of ourselves, let's take a look at the kernel's role in the operating system.

In most operating systems, including UNIX and Windows, the kernel is special software that

controls various extremely important elements of the machine. As illustrated in Figure 8.1, the

kernel sits between individual running programs and the hardware itself. Performing various

critical housekeeping functions for the operating system and acting as a liaison between user-

level programs and the hardware, the kernel serves a critical role. Many kernels, including

those found in UNIX and Windows systems, include the following core features:

� Process and thread control. The kernel dictates which programs run and when they run by

creating various processes and threads within those processes. A process is nothing more

than some memory allocated to a running program, and the threads are individual

streams of execution within a process. The kernel orchestrates various processes and

their threads so that multiple programs can run simultaneously and transparently on the

same machine.

� Interprocess communication control. When one process needs to send data to another

process or the kernel itself, it can utilize various interprocess communication features of

most kernels to send signals and data.

� Memory control. The kernel allocates memory to running programs, and frees that

memory when it is no longer required. This memory control is implemented in the kernel's

virtual memory management function, which utilizes physical RAM and hard drive space

to store information for running processes.

� File system control. The kernel controls all access to the hard drive, abstracting the raw

cylinders and sectors of the drive into a file system structure.

� Other hardware control. The kernel manages the interface between various hardware

elements, such as the keyboard, mouse, video, audio, and network devices so various

programs can utilize them for input and output operations.

� Interrupt control: When various hardware components of the machine need attention

(e.g., a packet arriving on the network interface) or a program encounters an usual event

(e.g., division by zero), the kernel is responsible for determining how to handle the

resulting interrupts. By taking care of the interrupt itself using kernel code or sending

information to a particular process to deal with it, the kernel keeps the system operating

smoothly.

Figure 8.1. A high-level view of an operating system kernel and its
relationship to user-level processes and hardware.

Pagina 1 di 3What Is the Kernel?

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

With these features, the kernel is all about control: sitting at the interstices of user programs

and hardware and controlling what happens on the machine.

As it runs, the kernel relies on hardware-level protections implemented in the system's CPU. By

using hardware-level protection, the kernel tries to safeguard its own critical data structures

from accidental or deliberate manipulation by user-level processes on the machine. Most CPUs

include hardware features to let software on the system run at different levels of privilege. The

memory space and other elements of highly sensitive software (like the kernel) cannot be

accessed by code running at a less-important level (e.g., user processes). On x86-compatible

CPUs, these different sensitivity levels are called rings, and range from Ring 0, the most

sensitive level, to Ring 3, the least sensitive level. As it runs different tasks, the CPU switches

between these different levels depending on the sensitivity of the particular software currently

executing.

For the Linux and Windows operating systems, only Rings 0 and 3 are used; the other options

supported by x86 CPUs (i.e., Rings 1 and 2) are not utilized. The kernel itself, in both Linux and

Windows, runs in Ring 0. In fact, running in Ring 0 defines a given task as being at kernel level.

If you run in Ring 0, you can access all of the kernel's memory structures, and are therefore at

the same level as the kernel code. User mode processes run in Ring 3, and, under most

conditions, are not able to access kernel space directly. By relying on Ring 0 and Ring 3, all

software on the machine is really carved up into two different worlds: kernel mode (running in

Ring 0) and user mode (running in Ring 3). For non-x86 CPUs, operating systems utilize

analogous concepts to Ring 0 and Ring 3 implemented in the CPU's hardware. Nearly all CPUs

support some notion of a privileged mode, where the kernel lives, and a nonprivileged mode for

user processes. Throughout the rest of this chapter, we'll use x86-specific terminology Ring 0

and Ring 3, as it so dominates literature on this topic.

So, your operating system really consists of two worlds: user mode and kernel mode. The user

mode is what you typically see and interact with on a day-to-day basis on your system, as it

includes the programs you run, such as a command shell, GUI, mail server, or text editor. The

other world, kernel mode, lies silently underneath the whole operation managing access to the

hardware and generally controlling things. When a system boots up, the kernel is loaded into

memory and begins execution in Ring 0, thereby creating the first world (kernel mode). After

the kernel gets itself set up in memory, it activates various user-mode processes that allow

individual users to access the system and run programs, thereby creating the user-mode world.

It's important to note that kernel mode is a very different concept from root or administrator

permissions. When an administrator runs a command, a given program executes within user

mode; that is, in Ring 3. From the kernel's perspective, the administrator is just another user,

albeit an important one, but still someone living in Ring 3.

When most programs run, control sometimes has to pass from user mode into kernel mode,

such as when the program needs to interact with hardware for printing to the screen, receiving

a packet, or some other action. When this happens, control is very carefully passed from user

mode to kernel mode, through tightly controlled interfaces. The software that implements this

Pagina 2 di 3What Is the Kernel?

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

transition from Ring 3 to Ring 0 is referred to as a call gate, as it acts as a gate for user-mode

processes into software living in kernel mode.

When administrators ask for a list of running programs using tools like the UNIX ps, lsof, or
top commands or the Windows Task Manager, they execute a command from user mode, which
asks the kernel to list all running processes. The kernel grabs data from its kernel-mode data

structures, responds to the user-mode command with the appropriate information, and the

running processes are displayed. Similarly, the administrator or users might ask for a list of files

in a directory. The kernel responds with the appropriate information. Or, you could look for

which TCP or UDP ports are in use, or whether the network interface is in promiscuous mode.

You might even run a file integrity checker to see if any of your critical system files have been

altered with a user-mode RootKit. All of these interactions, and far more, rely on the kernel to

determine the status of the machine. That's how it's all supposed to work. The kernel takes care

of business, and everyone is happy.

 < Day Day Up >

Pagina 3 di 3What Is the Kernel?

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

