

 < Day Day Up >

Windows User-Mode RootKits

For many years, user-mode RootKits were focused primarily on UNIX systems. With these origins, it's not an
accident that the word root (the superuser account of UNIX) is prominently featured in the word
may have been born and grown up on UNIX, but user-mode RootKit techniques have been adapted to other
platforms as well, especially over the past few years. In particular, there are a handful of interesting user
RootKits for Windows machines, which we'll discuss in this section. Like their UNIX counterparts, user
RootKits on Windows modify critical operating system software to allow an attacker to gain access to and hide on
a machine. Note that we're still focused on user-mode RootKits (which, by our definition, involve manipulating
operating system executables and not the kernel).

User-mode RootKit techniques are used in a some of tools on Windows, but we should note that there just aren't
as many solid and popular user-mode RootKits on Windows as there are on UNIX. I've observed this fact in the
computer attack cases I've handled myself. On UNIX, user-mode RootKits are very frequently employed. For
Windows systems, on the other hand, user-mode RootKits are less frequently used. There are several reasons for
this phenomenon, including these:

� Early on, application-level backdoors proliferated on Windows systems. Throughout the mid
much of the work in creating backdoor tools for Windows focused on creating application-level backdoors,
such as the port listeners and remote GUI tools we discussed in Chapters 5 and 6. Most attackers were
perfectly satisfied with the remote control GUI features of tools like VNC, Back Orifice, and SubSeven. They
didn't need to modify operating system components when they could easily rely on all of the features
offered by these application-level tools. If a bee-bee gun accomplishes your goal, there's no need for a
Howitzer.

� Later, many RootKits on Windows focused on manipulating the kernel and not general system binaries.

in large part to research by Greg Hoglund and other folks at the well-named www.rootkit.com
Windows RootKits jumped to the kernel level in the late 1990s. So, a lot of backdoor developers on
Windows jumped from focusing on the application level right into the kernel itself, with little focus on
operating system executables and the associated user-mode RootKits that sit in between. When you get
tired of bee-bee guns and some guy is giving away cruise missiles for free, you don't need a Howitzer.
We'll zoom in on these kernel-mode RootKits for Windows in Chapter 8.

� Windows File Protection (WFP) hinders the replacement of executables. With the release of Windows 2000,
Microsoft started building functionality into the operating system that automatically scans the machine
looking for unexpected changes to critical executables and libraries. If the WFP feature finds a change to a
critical system file, it restores the original file automatically: No fuss, no muss. WFP doesn't eliminate the
possibility of a user-mode RootKit on Windows, but it does raise the bar somewhat. If they want to
implement a RootKit that replaces executable or library files, attackers have to work a tiny bit harder to
defeat WFP. We'll discuss how they accomplish this feat later in the chapter.

� Windows is a closed-source operating system, so creating a user-mode RootKit on Windows requires more

work. The source code for several UNIX variations is widely available, allowing attackers to easily add
backdoor functionality to existing programs. Much of the real work is already done for the attacker by the
operating system developer in creating the actual programs in the system. The attacker merely has to add
evil features to the already existing source code to create the fakes included in user-mode RootKits for
UNIX. On the other hand, with Windows, Microsoft maintains tighter (but not perfect) control over the
source code. An attacker trying to create replacements for existing Windows binary executable programs
will have to reverse-engineer the Windows functionality, without being able to review the source code.

[1] Please note that I'm not arguing here that a closed-source model is inherently more or less secure than an open

development model. I'm merely discussing the relatively more difficult task of creating a user-mode RootKit on Windows. As
we'll see throughout the rest of this chapter, although creating RootKits on Windows is more of a challenge without the source
code available, attackers have more than met that challenge. Without source code, they've implemented some extremely
powerful user-mode RootKit tools. I personally believe that the closed-source and open-source software development models
are tied from a security perspective.

Pagina 1 di 19Windows User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

� Windows isn't as well documented as UNIX. This issue goes hand-in-hand with the preceding closed
discussion. Because UNIX has been around for a longer time, and the source code is more widely available,
both the good guys and the bad guys understand its features in far more detail. When trying to determine
how a UNIX binary executable works, an attacker can simply ask a question in a public forum, or use an
Internet search engine like Google to find the answer. In contrast, in the Windows operating system, a
good deal of functionality just isn't documented. The attackers have to figure out how Windows works
through trial and error, reviewing compiled binary code, and decompiling code.

Now that we've got a feel for some of the challenges faced by developers of user-mode RootKits for Windows,
let's jump in and start analyzing how they surmount these challenges. We'll cover three different methods for
implementing user-mode RootKits on Windows, and look at example tools that rely on each technique. These
three different Windows RootKit implementation techniques are contrasted in Figure 7.12.

Figure 7.12. Three different techniques for implementing user-mode RootKits on

Windows systems.

First, a user-mode RootKit on Windows could interface with existing Microsoft operating system components to
undermine their security. Microsoft has devised several interfaces in Windows for extending its built
functionality through third-party tools. A user-mode RootKit could exploit these interfaces by inserting itself at
the defined interfaces between existing Microsoft programs, instead of overwriting Windows code. Later in the
chapter, we'll discuss a tool called FakeGINA that uses this technique.

Next, a user-mode RootKit on Windows could just overwrite existing executable files and libraries on a Windows
machine, much like the user-mode RootKits on UNIX that we discussed in the first half of this chapter. To
accomplish this task, an attacker must first disable the WFP feature that prevents changes to various critical
operating system files in Windows. We'll analyze how they shut off WFP so they can overwrite these system files,
and then look at a particular example of malware that conducts such an attack: the Code Red II worm.

Finally, an attacker could implement a RootKit that uses a set of very popular techniques to inject code into
running processes and overwrite their functionality. Instead of manipulating files on the hard drive, these user
mode RootKits shoot their code right into running processes' memory using techniques called DLL injection and
API hooking. At the end of this chapter, we'll explore this technique, as well as a tool based on it, called the AFX
Windows RootKit.

Manipulating Windows Logon with FakeGINA

In an effort to be flexible, Microsoft has designed some components of Windows to be easily modified so third
party tools can extend the operating system. Some parts of Windows are highly modular, allowing an
administrator (or evil attacker) to add components to the system using well-defined interfaces created by
Microsoft. In particular, the user logon process is one of the most important areas, from a security perspective,
that can be extended in this way by adding libraries to the system. The basic logon process can be modified by
third-party tools, so that nifty new authentication mechanisms, such as biometrics, public key infrastructures, or
other tools, can be easily deployed. Unfortunately, this flexibility offers a foothold for the bad guys. An attacker
could subvert this process using user-mode RootKit mechanisms by adding malicious code to the logon process.

Pagina 2 di 19Windows User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

To understand how, we need to discuss the process of logging on to a Windows system. When you attempt to log
on to Windows, the operating system invokes the Winlogon process. This process collects your authentication
credentials (e.g., a user ID and password) and verifies them so you can get access to the machine. This process
is illustrated in Figure 7.13.

Figure 7.13. The normal Winlogon process.

A user initiates the logon process by conducting what Microsoft calls a secure action sequence, shown in Step 1
of Figure 7.13. The most common secure action sequence is hitting the Ctrl+Alt+Delete keys simultaneously,
which some people refer to, tongue in check, as the Microsoft three-fingered salute. The Winlogon process, in
Step 2, invokes a GINA (usually pronounced "jeena"), which is a special library of code designed for
authentication. GINA is an abbreviation for Graphical Identification aNd Authentication. In Step 3, the GINA asks
the user for authentication credentials, such as a user ID and password. The GINA then packages up these
credentials for the appropriate authentication mechanism (e.g., the Local Security Authority), and launches the
user's environment if the credentials are authentic, in Steps 4 and 5.

By default, Windows systems are shipped with a Microsoft-provided GINA called, appropriately enough,
Msgina.dll. If you've ever logged in locally to a Windows machine (and who hasn't), you've seen this default
GINA in action. It's the code that displays the standard logon dialog box on Windows, asking for your logon and
password.

Now, to support different authentication mechanisms, Windows allows system administrators to install third
party GINAs. In fact, instead of completely writing a GINA from scratch, a developer could even put a piece of
code between the Winlogon process and the existing Msgina.dll, in essence wrapping the current GINA. That way,
the existing logon functionality is preserved, and new capabilities can be easily added. That's the positive face of
this nifty GINA feature. However, as you might expect, bad guys abuse this capability by creating evil, substitute
GINA code, thereby employing user-mode RootKit techniques on Windows.

One of the most popular GINA attack tools is named FakeGINA, which is pronounced "Fake-jeena" in polite
circles. FakeGINA runs on Windows NT and 2000 (XP and 2003 are not supported). It was written by Arne
Vidstrom and is available at http://ntsecurity.nu/toolbox/fakegina. Now, FakeGINA is not a full user
RootKit by itself. However, it uses RootKit-like techniques to undermine the authentication process, and could be
included as an element in a more full-featured RootKit package.

As illustrated in Figure 7.14, FakeGINA sits in between the Win-logon process and the existing Msgina.dll. The
purpose of FakeGINA is not to give backdoor access. Instead, it records the passwords typed in by all users on
the system, storing them in a file for the attacker. Step 1 works just like before; the Winlogon process is
activated by a user. In Step 2, however, the Winlogon process calls the FakeGINA tool instead of the real GINA.
When the user types in a user ID and password, the FakeGINA tool secretly writes them to the attacker's file, in
Steps 3 and 4. After writing them to the file, FakeGINA passes the authentication credentials to the real GINA on

Pagina 3 di 19Windows User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

the system, Msgina.dll. The real GINA completes the authentication process just as before, in Steps 6 and 7.

Figure 7.14. FakeGINA secretly gathers all user IDs and passwords by sitting

between winlogon.exe and msgina.dll.

To install FakeGINA, an attacker must set a registry key indicating which GINA the system should use. This key,
located at HKEY_LOCAL _MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Winlogon, is named
GinaDLL. If this registry key is not set, the default Msgina.dll is used by the system. To install FakeGINA, the
attacker simply sets this key so that it contains the name of the FakeGINA.dll, which must be installed in the
System32 directory. After the system is rebooted, FakeGINA will begin its nefarious password snatching, writing
all user IDs and passwords to a file named passlist.txt in the System32 directory.

To install FakeGINA, an attacker needs administrator privileges to alter the registry, as well as to load another
GINA into the System32 directory. You might wonder why an attacker who already has administrator permissions
on a system would want to get a list of passwords on the machine. After all, you might think, if the bad guys
have conquered the machine already, why do they bother collecting passwords for the system? Actually, these
passwords could prove to be very valuable for several reasons. First, the attacker might have exploited some
process on the machine running with administrator or system privileges via a buffer overflow or related attack.
The bad guy can execute commands with these privileges, thereby installing FakeGINA, without even knowing
the administrator's password. After installing FakeGINA using this access, however, the attacker can then sit
back and wait for the real administrator to log on. At that point, the attacker will know the administrator's
password, and can directly log on to the box without exploiting the buffer overflow again.

Another reason that FakeGINA is so valuable to attackers who already have administrator privileges involves the
common practice of users manually synchronizing their passwords across multiple systems. By snagging the
passwords of users on one system using FakeGINA, the attacker can try those same passwords to log on to other
systems. If the users have the same passwords on different machines, the attacker will be successful. Heck, the
attacker might get really lucky and get the password for a user who has administrative privileges on other
machines.

Finally, you might ponder the use of a password-cracking tool instead of FakeGINA. After all, if an attacker has
administrator permissions, he or she could just dump the local stored encrypted passwords from the machine
and crack them using a password-cracking tool. Password crackers guess password after password, encrypting
each guess. If the encrypted guess matches the encrypted password, the attacker now knows the password.
Depending on how difficult the passwords are to guess, cracking could take between seconds and years. With
FakeGINA, on the other hand, passwords materialize instantly in the attacker's file as each user logs on. No time
consuming cracking is required, speeding up the attacker's job.

Pagina 4 di 19Windows User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

WFP: How It Works and Attacks Against It

Although FakeGINA can certainly be damaging, it only alters Windows functionality that Microsoft specifically
designed to be changed through special interfaces. Suppose an attacker wants to alter other binary executables
or libraries on the hard drive in a user-mode RootKit attack. The attacker will have to contend with WFP, a
feature built into Windows 2000, XP, and 2003. Windows Me includes a similar capability called System File
Protection (SFP), which works like a junior version of WFP. We'll focus on WFP, because Windows 2000, XP, and
2003 are in far more widespread use than Windows Me.

When any directory containing sensitive Windows files (e.g., the System32 directory) is changed, the system
signals WFP, invoking its functionality to check the digital signature of the changed file. WFP monitors sensitive
programs, libraries, and configuration files to look for changes. On a stock Windows 2000 system, WFP monitors
more than 1,700 files, a pretty large number. If it detects a change in any one of these files, WFP compares the
digital signature of the changed file to the original file. If the signature doesn't match a Microsoft
stored in the registry, WFP replaces the file with the proper Microsoft version of the file. This feature could
seriously impact an attacker's user-mode RootKit, automatically uninstalling the tool before the attacker even
has a chance to use it. Note that WFP focuses on checking for changes to existing files; if a new file is added to a
sensitive directory, WFP neither prevents nor logs the fact. Its sole focus is on stopping changes to existing
Windows files that Microsoft considers sensitive, acting as a built-in file integrity checking tool.

Microsoft created WFP to serve both stability and security needs. From a stability perspective, some third
software installation programs inadvertantly modify or corrupt critical Windows files, possibly making the system
crash. In the security realm, attackers might try to alter critical system files with user-mode RootKits. In either
case, WFP restores the original file, often without the user or system administrator even realizing the system was
saved from certain doom. WFP acts almost like Big Brother sitting over your shoulder. You might change or even
delete a WFP-protected file, replacing it with some new version. Thirty seconds later, though, the same old
version mysteriously appears again, raised from the dead by WFP. The invisible hand of WFP tried to set things
straight, whether you wanted it to or not.

When it detects a change in a critical system file, WFP searches the system for a Microsoft-authorized version of
that file so that it can switch things back. WFP looks in the following locations, in this order, to locate a good
version of the altered file:

� The Dllcache directory, which is stored by default in the System32 directory (usually C:\Winnt\System32
\Dllcache on Windows 2000).

� The Driver.cab file, which is stored in the Driver Cache directory (C:\Winnt\Driver Cache\I386\Driver.cab
by default on a Windows 2000 box).

� The original Windows 2000 installation, which could be stored on the hard drive itself or on a network
directory accessible via Windows File Sharing, if the operating system was originally installed via the
network.

� A CD-ROM inserted in the local system.

When a good version of the program matching the appropriate digital signature is located, WFP writes it over the
suspect version, restoring the system to its original Microsoft-approved state. If a suitable good version of the file
cannot be found, WFP notes this fact in the system logs and prompts the user via a dialog box, indicating an
error. This dialog box is shown in the bottom right-hand corner of Figure 7.15.

Figure 7.15. Deleting tftp.exe from the dllcache and its original location makes WFP

pop up a dialog box.

Pagina 5 di 19Windows User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

WFP typically runs in the background, cruising around the file system every few minutes, but an administrator
can manually force a WFP check to occur immediately. Using the command-line tool called the System File
Checker (SFC), an administrator can kick off a WFP check right away or at the next system boot. The SFC
command starts the process.

With WFP working its magic, you might wonder how an administrator would alter any of the legitimate files on
the system, such as installing a patch. If WFP undoes all changes to these files, how can you patch a system?
Well, WFP allows files to be altered, provided that the alteration occurs using one of the following Microsoft
approved mechanisms:

� Windows Service Pack installation, using the program Update.exe.

� Hotfix distributions installed using the program Hotfix.exe.

� Operating system upgrade, using the program Winnt32.exe.

� Windows Update Feature.

� Windows Device Installer.

Each of these programs works with WFP to make sure that changes are allowed on the system. WFP does need to
allow some changes to the system from time to time in the normal course of business.

WFP in Action

To get a feel for WFP in action, let's pretend we're a user-mode RootKit and try to change a pretty innocuous file
on a Windows system. You can try this on your own machine, if you'd like. We're going to experiment with a file
called tftp.exe that isn't too important, so removing it shouldn't damage your machine.[2] Tftp.exe is a client for
the Trivial File Transfer Protocol (TFTP), a younger sibling to the more robust FTP. TFTP allows users to move
files around without providing any authentication, but it is seldom used legitimately on a Windows system. Many
attackers use TFTP on Windows systems to transfer backdoors to the machine. Because of this, I prefer to
remove it from my systems so that an attacker cannot exploit it. I feel a lot safer on a system where tftp.exe has
been deleted.

[2] However, if you do try this at home, you might want to back up your system, just in case. You should always keep a recent backup

of a critical system handy. You've been warned!

By default, tftp.exe is located in the System32 directory. On this very machine where I'm typing right now
just deleted it! Yikes… Is this the end of the world? Will I lose this document in a fiery flash of bits and smoke?
Not at all. After 30 seconds or so, WFP restored the file, no questions asked. My system is fine, and in its

Pagina 6 di 19Windows User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

previous condition, thanks to Big Brother, as manifested by WFP.

Now, I know what you are thinking. You're wondering what happens if we remove the file in the Dllcache
directory that WFP uses to restore tftp.exe. I like the way you think! That's what a RootKit might try to do, so
we'd better check it out. This time, I first removed the tftp.exe copy used by WFP in the Dllcache folder, and then
I deleted the regular tftp.exe, as shown in Figure 7.15.

How does WFP react to this situation? If it cannot find the file in the Dllcache folder, it checks to see if there's a
copy of the Windows install media on the hard drive, on the network, or in the CD-ROM drive. If it can't find a
good version of tftp.exe anywhere, WFP pops up a dialog box, shown in the bottom corner of Figure 7.15

WFP really wants to get a copy of that file, but cannot find it in the Dllcache directory. Therefore, it asks the user
for the installation CD-ROM. Most users would hit the Retry button. The same message pops up again. After
repeating this Retry task a few times, most users will just hit Cancel, not realizing that their operating system
has been altered. Unfortunately, this warning dialog box isn't very helpful, as it doesn't even show which file has
been altered. The user can only guess at which files are causing problems. Clicking More Information doesn't help
either, as it, too, fails to show the name of the offending file. The More Information button just causes the
system to display the following quite useless text:

Possible reasons for this problem:

- You have inserted the wrong CD (i.e., a different

 Windows 2000 product CD than the version installed).

- The CD-ROM drive in your system is not functioning.

Thank you so much, Big Brother. Although the dialog boxes are of limited value, when the user at the console
gives up and clicks Cancel, WFP logs this event. Therefore, a diligent system administrator can follow up to
discover what really happened. I'm happy to say that the event log does indicate which file was altered, as well
as the user name that clicked Cancel in the dialog box, as shown in Figure 7.16.

Figure 7.16. WFP logs an event indicating that it cannot restore tftp.exe.

Now, in our example, our alteration of the system, removing tftp.exe, was very small, and actually slightly
improved the security of the system. But an attacker could do even nastier things, such as installing a complete
user-mode RootKit, overwriting normal files all over the operating systems to mask the attacker's presence and
get backdoor access to the machine.

Pagina 7 di 19Windows User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Controlling Big Brother: WFP Settings

The WFP configuration is stored in the system registry, where most Windows operating system settings are
found. There are several registry keys associated with WFP, all located under the registry location
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Winlogon\. The WFP registry settings
include the SFCScan, SFCQuota, SFCDllCacheDir, SFCShowProgress, and SFCDisable keys. If these keys are not
explicitly set in the registry, the system operates with the default behavior for each item.

The SFCScan value determines how WFP will act during the system boot process. This key has the following
settings:

� 0: The default value of 0 does not do a comprehensive scan of all protected files at reboot, but instead runs
WFP in the background continuously after the box is booted up.

� 1: The value 1 instructs WFP to check the integrity of all protected files at every reboot, significantly
lowering system performance after booting up. With this setting, your system might be very sluggish for 10
or 20 minutes after reboot.

� 2: Setting this key to a value of 2 causes WFP to do a comprehensive scan once after the next reboot. After
all subsequent reboots, the tool will run continuously in the background.

It's important to note that this registry setting controls the behavior of WFP only during the boot process.
Regardless of this key's value, WFP will always run continuously in the background after the system is booted.

The SFCQuota key sets the maximum size, in megabytes, that the Dllcache directory can hold. The default value
for this key is 400 MB. The value 0xFFFFFFFF allows all critical system files to be stored in the Dllcache,
regardless of the total size. The SFCDllCacheDir setting establishes where the Dllcache folder is located. By
default on a Windows 2000 machine, it is set to C:\Winnt\System32\Dllcache. The SFCShowProgress registry key
specifies whether a progress meter should be displayed on the screen during a WFP scan.

The SFCDisable key is very, very important, as it can be used to enable or disable WFP. There are four Microsoft
documented values for this key:

� 0: This default value means that WFP is active, always running in the background.

� 1: This setting will disable WFP, but prompt an administrator to re-enable it during the next boot sequence.

� 2: This value will disable WFP for the next reboot only, without prompting the user. For subsequent
reboots, WFP will be automatically reactivated.

� 4: The value 4 enables WFP, but disables all pop-up windows warning the user that files have been altered.

It should be noted that for values 1 or 2 to take effect, a kernel debugger must be installed and activated on the
system. If a kernel debugger is not in use, WFP will not be disabled.

So, Microsoft has publicly documented these four values for this supervital key. Note that the number 3 is
missing from this list. This setting, although undocumented, leaves WFP enabled. So, that rounds out the list of 0
through 4, but, as we shall see shortly, there's another undocumented value for SFCDisable that is quite useful
for attackers.

Attacking WFP

Now, how can an attacker manipulate WFP to install user-mode RootKit replacement programs on a Windows
machine? The attacker has at least four options. First, the attacker could simply implement the trick we applied
earlier, deleting the Dllcache backup version of the file first, and then replacing the actual file. Although this

Pagina 8 di 19Windows User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

would certainly work, it has a downside for the bad guy: The user or administrator will see the warning message
on the screen. Still, if the attacker expects the user to just hit Cancel, this approach works like a charm.

Another approach an attacker could use to undermine WFP involves altering the location of the Dllcache by
modifying the SFCDllCacheDir registry key. A bad guy could simply create a new Dllcache folder and configure
the system to use it. WFP would then not be comparing the RootKit files to the original Microsoft files. This
technique doesn't work that well, however, as WFP checks the digital signatures of all protected files. Without the
appropriate digital signatures from Microsoft-certified programs, WFP won't be able to ensure the authenticity of
the attacker's programs. Therefore, this approach would generate many error log messages, as WFP flounders
about, wondering why none of the signatures of files in the new Dllcache folder are correct.

A third approach is to set the SFCDisable registry key to the Microsoft-recommended value for turning off WFP.
By setting this registry value to 1 (and installing a kernel debugger), an attacker can disable WFP the next time
the system boots up. The change isn't immediate, however. Until the system reboots, WFP is still active.
Therefore, an attacker would have to change this registry key, install a kernel debugger, force the system to
reboot, and then install a user-mode RootKit. There is a downside to this approach for the attacker, though. The
next time the administrator logs into the system, the SFCDisable registry setting value of 1 makes the operating
system bring up a dialog box with this text:

Warning! Windows File Protection is not active on this

system. Would you like to enable Windows File Protection

now? This will enable Windows File Protection until the

next system restart. <Yes> <No>.

With a diligent system administrator, this message could trigger an investigation. However, some less clueful
administrators might simply click No. We should note that the SFCDisable value of 2 isn't all that useful for the
RootKit-wielding attacker, as WFP is only disabled for the very next reboot. For all subsequent reboots, WFP
would be reactivated, scrubbing the attacker's RootKit from the system.

As a fourth option, the attacker could set the SFCDisable registry key to a different value, undocumented by
Microsoft. I hinted at this possibility earlier. Several reverse engineers were able to determine that the
SFCDisable value of 0xFFFFFF9D would completely disable WFP on Windows 2000. At the next reboot, WFP won't
be started. That's a profound discovery, with nary a mention from Microsoft in the WFP documentation. Also,
using this setting, the system won't print any dialog boxes indicating that WFP has been shut off. During boot,
though, the following message will be written to the system log: "Windows File Protection is not active on this
system." It's subtle, but Windows will tell you when WFP has been shut off, thankfully.

This fourth option is a little more complicated on Windows 2000 Service Pack 2 or later, Windows XP, and
Windows 2003. On these types of systems, in addition to changing the SFCDisable registry key value, the
attacker must alter a specific library on the system, called Sfc.dll. Using a hexadecimal editor, the attacker has to
change four hex digits in this library to activate the SFCDisable key. The particular four digits and their offset
depends on the patch level of the operating system [3].

After implementing these changes, whether by hand or using an automated program, the attacker is able to
modify any file on the system. The disabled WFP will not interfere with the attacker's actions, making the system
ready for planting a user-mode RootKit.

WFP Attack Example: Code Red II

One tool that implements this type of attack against WFP is the Code Red II worm, which attacks Windows
systems running Microsoft's IIS Web server. In August 2001, this worm started its spread across the Internet,
following in the footsteps of the original Code Red worm. "Wait a minute," I can see you saying, "wasn't Code
Red II a worm, and not a RootKit?" Actually, it uses both types of techniques. Code Red II used worm spreading
mechanisms to carry elements of a user-mode RootKit to victim Windows machines. With this capability, Code
Red II was potentially far more damaging than the original Code Red worm, which focused only on spreading and

Pagina 9 di 19Windows User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

flooding the White House Web site and not distributing backdoors. Code Red II, on the other hand, used RootKit
style tactics. We'll look at other specimens of combination malware in more detail in Chapter 9.

The Code Red II worm scanned for and penetrated victim IIS servers by exploiting a buffer overflow
vulnerability. This worm used the exact same buffer overflow exploit that the earlier original Code Red worm
exploited to spread on the Internet a month before. Once running on the victim machine, the Code Red II worm
made copies of the Windows Cmd.exe command shell in several locations, including C:\Inetpub\Scripts\Root.exe.
This directory is where the IIS server stores Web-accessible scripts. Code Red II copied the normal Windows
command shell (Cmd.exe) there, renaming it Root.exe. With a copy of the command shell executable located in
this standard IIS scripts directory, an attacker can easily send commands to this shell remotely via the IIS server
itself. There's a backdoor for you. Now, the worm had to conceal this backdoor by hiding the Root.exe file.

To accomplish this, Code Red II inserted a Trojan horse program called explorer.exe into the C:\ and D:\
directories. The normal Windows Explorer implements the standard Windows GUI, painting pretty pictures of the
desktop and accepting user input from the keyboard and mouse. Unfortunately, because of an earlier bug in
unpatched Windows machines called the Relative Path Vulnerability, a file named explorer.exe at the top of the
directory structure (in C:\ or D:\) will be run by default whenever a user logs into the box. So, when a user logs
in, the worm's code is executed when the GUI is initiated.

The worm's version of explorer.exe was simply a filtering wrapper that executed the real explorer.exe file. The
filter built into the tool, however, masked all references to the Root.exe and explorer.exe files created by the
worm. That's how the evil explorer.exe hid itself and the command shell backdoor in the Web server's script
directory. The evil version of explorer.exe also had one other very interesting other feature. It altered the value
of the SFCDisable registry key, changing it to 0xFFFFFF9D so that WFP is disabled. That way, an attacker can
access the system and make changes to files without having to worry about WFP restoring them. Using these
user-mode RootKit-style techniques, Code Red II spread to thousands of systems very quickly in August 2001.
However, its damage was limited by the fact that a good number of administrators had already patched their
systems against the buffer overflow used by the original Code Red worm. Still, these WFP-disabling attacks will
likely be used again in future tools.

DLL Injection, API Hooking, and the AFX Windows RootKit

We've seen how an attacker places code like FakeGINA in between existing Windows components and overwrites
critical system files by disabling WFP. Next, we'll talk about another user-mode RootKit technique on Windows
that is both pernicious and popular. Instead of messing around with Windows features for extending the
operating system or overwriting files, attackers are increasingly injecting their malicious code right into the
memory space of running processes on a machine. On a running Windows machine, several dozen or more
processes are executing at any given time, each with its own memory space. Some processes are user
applications, such as Winword, the familiar Microsoft Word program. Others are associated with the operating
system, such as the Winlogon process used for authenticating users. With the proper privileges on the machine,
an attacker can inject malicious code into any already-running process on the box, overwrite existing functions in
that target process, and activate the attacker's code to run inside of the other process. Now, that's nasty! With
this form of user-mode RootKit on Windows, instead of replacing files on the hard drive, attackers inject
malicious code into running processes.

Windows Code: EXEs vs. DLLs

To understand how this code injection technique works, we need to discuss two of the most prominent forms of
code on Windows machines: executable programs (EXEs) and dynamic link libraries (DLLs). EXEs (usually
pronounced "E-X-Eees" or even "Ek-sees") are simply programs that can run on the machine. Of course, you are
familiar with EXEs. You start them all the time, either by double-clicking them or typing their name at a
command prompt. When an EXE starts to execute, it creates a running process on the system. DLLs, on the
other hand, are not directly executed by themselves. Instead, they provide functions to a running EXE process so
that it can take some action.

DLLs are little bundles of code, broken up into several different functions. All of the related functions offered by
one or more DLLs are called an application programming interface (API). Each individual function in a DLL takes
some action on the system. The running EXE processes on the system load DLLs into their memory space. These

Pagina 10 di 19Windows User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

EXEs share the DLLs with each other and use them to accomplish various actions, such as displaying data in a
window or sending information across the network. In fact, the Windows operating system itself is primarily just
a collection of EXEs, DLLs, the kernel, and some device drivers, all implemented in tens of millions of lines of
code.

You can think of the relationship between EXEs and DLLs using the analogy of people and hand tools. EXEs are
like people. By themselves, they can accomplish various straightforward, self-contained goals. A person can walk
around the block. An EXE can do basic mathematical operations, such as counting numbers. DLLs function like
hand tools, extending the reach of the EXE so it can accomplish more complex goals, interacting with the
operating system and environment. Using a hammer and nails, a person can build a house. Or, with a chain saw,
a person can cut down a tree. Similarly, using a DLL, an EXE can display data in a window on the screen.
Furthermore, just as people can share tools, various EXE programs can share DLLs. A single DLL that displays
information on the screen can be utilized by thousands of different EXEs, all to benefit from the same
functionality.

DLL Injection and API Hooking

So, an EXE program loads the various DLLs it requires and relies on them to take actions on the system.
Attackers use a technique called DLL injection to force an unsuspecting running EXE process to accept a DLL that
it never requested. Very rudely, an attacker injects code in the form of a DLL directly into the victim EXE
process's memory space. DLL injection requires several steps to be taken by the attacker [4], including:

� Allocating space in the victim process for the DLL code to occupy. Microsoft has included a built
in the Windows API to accomplish this task, called VirtualAllocEx.

� Allocating space in the victim process for the parameters required by the DLL to be injected.

can be done using the built-in Windows VirtualAllocEx function call.

� Writing the name and code of the DLL into the memory space of the victim process. Again, Windows
includes an API with a function for doing this step, too. The WriteProcessMemory function call can be used
to write arbitrary data into the memory of a running process.

� Creating a thread in the victim process to actually run the newly injected DLL. As you might have guessed
by now, Windows includes an API with this capability, too. Microsoft has made this entire process much
easier with these various API calls. The CreateRemoteThread starts an execution thread in another process,
which will run any code already in that process, including a newly injected DLL.

� Freeing up resources in the victim process after execution is completed. If the attacker is extra polite, he or
she can even free up the resources consumed by this technique after the victim thread or process finishes
running, using the VirtualFreeEx function.

The attacker runs a DLL injection tool that creates an attacking process to utilize these Windows function calls.
Like a snake injecting venom into a victim, the attacker's DLL injection process then inserts functionality into any
other currently running process. No predefined functionality is required in the victim process. In fact, the victim
process really doesn't have a say in the matter. The attacker's process uses the various Windows API function
calls to inject the code and make the victim process run it. So, for example, using this technique, I could inject
code for implementing a network backdoor shell listener inside of your running Notepad.exe process, if you are
currently editing a file. Any type of code can be injected into any running process. We should note that each of
these Microsoft-provided functions could be used in a legitimate fashion to extend running process capabilities
dynamically or to debug programs. As usual, attackers abuse this powerful capability to achieve their evil goals.

To perform each of these DLL injection steps, the attacker must have the Debug Programs right on the system.
This privilege is normally used to attach a program debugger to running processes, so a system administrator or
software developer can troubleshoot a problem by looking at running programs in detail. To carry out its job, a
debugger requires detailed access to a running program's memory structures, including all data elements as well
as code. With this great level of access and control, the Debug Programs right is typically very carefully guarded
on the system, given only to administrators, or to no one at all. However, by taking over a victim machine and

Pagina 11 di 19Windows User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

conquering system or administrator privileges, attackers can exploit this capability by giving themselves the
Debug Programs right. Of course, beyond looking at the guts of running processes, attackers use the Debug
Programs right to perform DLL injection.

Employing this technique, the attacker can inject code into an unsuspecting process. But what type of code will
the attacker inject? Here's where the API hooking concept comes into play, allowing the bad guy to employ user
mode RootKit-style techniques. The attacker overwrites code from existing DLLs already loaded into the running
victim process. The bad guy hooks certain functions in the API offered by a legitimate DLL to malicious code
provided by the attacker, as illustrated in Figure 7.17. That is, these function calls will no longer activate the
legitimate code in the DLL. Instead, when the running EXE process makes a certain function call to perform some
action, such as displaying information in a window on the screen, the attacker's injected DLL will be run. The
attacker's own code will then decide whether to accurately display the information, filter the output, or conduct
some completely different activity. Alternatively, instead of wholesale replacement of the existing DLL code, the
attacker could be more efficient by just wrapping existing DLL code inside the attacker's own injected
functionality. Such wrapping lets the attacker write less code by relying on existing features in the DLL for most
of the work. Using this API hooking in coordination with DLL injection, an attacker can replace or wrap critical
system functionality, gaining backdoor access and hiding on a system. In other words, using these techniques,
an attacker can implement a user-mode RootKit on Windows.

Figure 7.17. Attackers use DLL injection to hook APIs in a victim process.

This entire multistep process of injecting DLLs and hooking APIs sounds pretty complex, with lots of steps for the
attacker to perform. However, attackers don't run these steps by hand. Instead, they use automated programs
to conduct the entire process without much manual intervention at all. Indeed, specific DLL injection and API
hooking tool suites have been developed, simplifying the entire process. MadCodeHook, developed by someone
called "Madshi," is one of these API tools that includes code that can inject DLLs into a variety of Windows
operating systems, including Windows 95/98/NT/2000/XP/2003. According to its author, MadCodeHook "makes
injecting DLLs into already running processes as easy as possible." The attacker just writes a little program that
calls Madshi's code, passing it a handle to the running process, as well as the DLL to be injected. Madshi takes
care of the rest. A list of various DLL injection and API hooking projects, including Madshi's wares, is included in
Table 7.3.

Another developer, called EliCZ, released a similar tool, called EliRT. Building on EliCZ's work, yet another
developer called Aphex has created a really easy-to-use DLL injector. Aphex's tool is called Inject.exe, a name
that summarizes its functionality quite well. The attacker runs Inject.exe at the command line, giving it two
parameters: the name of the running process to receive the DLL, as well as the name of the DLL file to inject.
So, to inject a hypothetical RootKit named RootKit.dll into the Winlogon authentication process using Inject.exe,
I'd simply have to type:

Table 7.3. Various DLL Injection and API Hooking Tools

Tool Name Author Feature Summary Location

MadCodeHook Madshi Extremely well- www.madshi.net/olddlp6.htm

Pagina 12 di 19Windows User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

C:\> inject.exe winlogon "C:\My Documents\RootKit.dll"

That's it. The functionality of RootKit.dll will now be inserted inside the active Winlogon process on the machine.
If RootKit.dll is any good, I've completely subverted the box. Implementing DLL injection and API hooking has
never been so easy.

AFX Windows RootKit: Using DLL Injection and API Hooking

Now, that RootKit.dll we discussed in the last section was completely hypothetical, but let's look at a very real,
particularly powerful RootKit that utilizes DLL injection and API hooking: the AFX Windows RootKit. Also
developed by Aphex, and distributed at www.iamaphex.cjb.net, this user-mode RootKit is focused on hiding
things on all types of Windows systems, including Win95/98/Me/NT/2000/XP/2003. That pretty much sums up
the major Windows releases over much of the past decade. Unlike the UNIX RootKits we discussed earlier, the
AFX Windows RootKit doesn't include any functionality to implement a backdoor. AFX focuses solely on hiding
things. The attacker is expected to bring a separate backdoor tool to the party, such as a Netcat listener, VNC, or
any other tool that gives remote backdoor access. Once that separate remote backdoor access tool is installed,
the AFX Windows RootKit hides the backdoor by utilizing DLL injection and API hooking to subvert existing
programs on the Windows machine.

The AFX Windows RootKit is capable of masking four different aspects of backdoor programs: running processes,
files on the hard drive, registry keys, and TCP or UDP ports. An attacker would first take over the system and
install a separate backdoor tool. Then, the bad guy would install and use the AFX Windows RootKit to hide any
traces of that backdoor on the system. You can think of the AFX Windows RootKit as a cloaking force field the
attacker can deploy around backdoors on the system. With the cloaking field in place, administrators and users
will not be able to see evidence of the backdoor's process, file, registry settings, or network connections.

The tool consists of only one executable program, the AFX Windows RootKit Configuration Console, which is used
to configure and generate custom RootKits based on the attacker's needs. The attacker activates this
Configuration Console on a local system owned by the attacker. The Configuration Console does not have to run
on the victim machine. Using the Configuration Console, the attacker configures the RootKit and then generates
an executable file to deploy to and run on the victim machine, a process illustrated in Figure 7.18

documented, full-
featured DLL
injection and API
hooking libraries

APIHijack Wade
Brainerd

Library for simplifying
API hooking

www.codeproject.com/dll/apihijack.asp

EliRT EliCZ API that implements
VirtualAllocEx,
CreateRemoteThread,
and other functions
so they transparently
function across older
Windows platforms
(Win95/98/Me) and
newer systems
(NT/2000/XP/2003)

www.anticracking.sk/EliCZ/export/EliRT.zip

Inject.exe Aphex Command-line
executable, based on
EliRT

www.megasecurity.org/Programming/StealthDLLInjection.html

Pagina 13 di 19Windows User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Figure 7.18. Using the AFX Windows RootKit to generate an executable to deploy on

the target machine.

Using the simple, highly intuitive Configuration Console GUI shown in Figure 7.19, the attacker defines hiding
rules to mask various elements that will be invisible on the target system. Now, you might observe that the GUI
looks like it comes from an Apple Macintosh system. However, don't be fooled by the aqua look of the GUI. The
screen capture is really from my very own Windows 2000 machine. The author of the tool just gave it a Mac
looking skin, even though it runs on Windows. The attacker selects each of the four tabs on the interface and
defines hiding rules for processes, files, registry keys, and network connections.

Figure 7.19. The Configuration Console of the AFX Windows RootKit is used to define

hiding rules.

The hiding rule syntax for the AFX Windows RootKit is very straightforward. The attacker identifies the names of
processes, files, registry keys, and port numbers, which should be filtered out and not shown to a user or
administrator. The attacker can even employ the wildcard (*) symbol to match all substrings in these names or
numbers. Using this syntax, I've defined two network connection filters for the RootKit in Figure 7.19
hiding rule, which specifies *TCP*, will hide all TCP connections. My second rule, *UDP*:2222*:* hides all
connections associated with local UDP port 2222. Check out that UDP syntax. Essentially, I'm defining a filter for
the output of the Windows netstat command, which shows listening ports using the following format:

Protocol LocalAddress:Port ForeignAddress:Port State

By specifying *UDP*:2222*:*, I've said that I want to hide any usage of the UDP protocol for any local address
using port 2222 connecting to any foreign address on any port. Strings matching my filter just won't show up in
the output of netstat. After the RootKit is installed, netstat won't ever show the usage of UDP port 2222 again.

Pagina 14 di 19Windows User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

The AFX Windows RootKit even includes a handy help function for defining these masking rules. By clicking the
friendly help button in the GUI, the screen shown in Figure 7.20 appears, offering coaching in defining masking
rules.

Figure 7.20. The AFX Windows RootKit Help screen offers tips for defining hiding
rules.

After setting up all of the hiding rules, the attacker clicks Generate in the GUI. The AFX RootKit Configuration
Console then creates an executable RootKit file. The attacker moves this file to the target system, runs it, and
voilà! The target system suddenly hides everything defined in the hiding rules by the attacker.

The process used by the RootKit executable to install itself is shown in Figure 7.21. When it runs on the victim
machine, the RootKit executable first makes a copy of itself in the System32 directory. Then, in Steps 1 and 2 of
Figure 7.21, it creates two other files in the same directory: iexplore.dll and explorer.dll. Gee, with names like
that, these files sure look like they belong on the machine, don't they? They look kind of like some files you
might think are associated with the legitimate programs Internet Explorer (iexplore.exe) and Windows Explorer
(explorer.exe). But pay careful attention to the file suffixes here; the RootKit creates iexplore.dll and explorer.dll.
On a stock Windows machine, there just aren't any files named iexplore and explore with a DLL suffix. That's
pretty tricky, and reminiscent of the naming games we discussed in Chapter 6.

Figure 7.21. The interplay between iexplore.exe, iexplore.dll, explorer.exe, and
explorer.dll when the AFX RootKit for Windows is executed.

Pagina 15 di 19Windows User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

After writing these DLLs in the System32 directory, the RootKit executable injects explorer.dll into running
processes named explorer.exe, in Step 3. The explorer.exe process is the legitimate running program that
displays the Windows GUI to the user. Once inside the legitimate explorer.exe process, the malicious explorer.dll
then does API hooking. It grabs the code inside of iexplore.dll in Step 4. To finish the process, in Step 5,
explorer.dll then injects iexplore.dll into the explorer.exe process, overwriting function calls associated with
displaying processes, files, registry keys, and connections. When a standard Windows tool, such as the Task
Manager, File Explorer, Registry Editor, or netstat command are executed, the malicious API code injected into
the legitimate Windows Explorer filters the hidden stuff from the output. In this way, the attacker's nefarious
deeds are hidden on the machine.

If all of these different references to iexplore.exe, iexplore.dll, explore.exe, and explorer.dll are confusing to you,
don't worry. That's what the attackers intended! However, by inspecting Figure 7.21, you can get a feel for
what's really happening with this RootKit.

Unfortunately, if you happen to stumble across this RootKit by observing iexplore.dll and explorer.dll in your
System32 directory, you cannot uninstall the RootKit by simply deleting the DLLs. If you try to delete these DLLs,
Windows will bark at you, telling you that these files are in use and cannot be deleted. As long as the operating
system is running, it will not allow these DLLs to be removed from the system.

To show you how the AFX Windows RootKit works, I've installed it on one of my own machines, using the hiding
rules for network connections to all TCP ports and UDP port 2222 that we defined earlier. Figure 7.22
results of running the netstat command on this system before and after installing the RootKit. Note that, sure
enough, all of my TCP port usage has suddenly disappeared. Also, any usage of UDP port 2222 would be masked,
as well.

Figure 7.22. Before installing the AFX Windows RootKit, netstat shows TCP ports.

Afterward, all TCP port usage is hidden.

Pagina 16 di 19Windows User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Although Figure 7.22 shows only port usage, the same hiding technique can be applied to process names, file
names, and registry keys using the AFX Windows RootKit. Truly, this capability is quite useful to the bad guys.

User-Mode RootKit Defenses on Windows

How can you defend yourself from the scourge of user-mode RootKit attacks against your Windows systems?
Happily, the defensive tools and techniques required for these tools map very closely to those we discussed for
UNIX systems. As we saw with UNIX, the user-mode RootKit defenses fall into three areas: prevention,
detection, and response. Let's go over each, citing specific tools you can use to protect your Windows systems.

User-Mode RootKit Prevention on Windows

As with UNIX RootKits, attackers require superuser privileges to implement each of the Windows RootKit
techniques we've discussed in this chapter. Therefore, you need to harden and patch your systems carefully to
ensure that an attacker cannot get administrator or System privileges on your machines. To harden your
systems, there are a variety of guides and programs available. However, one of my favorites is the free Win2K
Pro Gold Template. To get a feel for this tool, consider the Windows security template features. Windows 2000,
XP, and 2003 all support the concept of a security template, which is just a file containing various security
settings for the box. Security templates can be used to bundle together settings for account permissions, registry
settings, password controls, and logging, as well as a myriad of other Windows security configuration options. By
applying the same template file to many systems, you can be sure that the overall security stance throughout
your environment meets a standard baseline. Administrators can apply these security template files to systems
using a variety of mechanisms, including the Secedit.exe command-line tool, the Security Configuration and
Analysis Tool GUI, or, if you've deployed Active Directory, via a Group Policy Object.

Microsoft ships Windows with a variety of security template files for workstations, servers, and domain
controllers. However, these built-in security templates tend to be either way too weak so that any attacker can
slice through them, or so strong that they render the system unusable in a real-world environment. What the
world needs is a reasonable security template that isn't too weak or too strong, but just right for most
environments.

Pagina 17 di 19Windows User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

The Center for Internet Security (CIS), the National Security Agency, and the SANS Institute, together with a
variety of other organizations, embarked on creating just such a template. They spent several months devising a
standard that would meet the most pressing needs of all of these organizations. Finally, they achieved consensus
and released their work, the Win2K Pro Gold Template, available at www.cisecurity.org. This template provides a
reasonable baseline of security for Windows 2000 workstations for most organizations. It serves as an excellent
starting and reference point for your security configuration. You can tweak it to make it stronger, or loosen its
restrictions for your environment. Note that, as of this writing, this standard applies only to Windows NT,
Windows 2000 Professional, and Windows 2000 Server machines. However, these same organizations are
working on templates for other versions of Windows machines right now.

CIS has also released a free scoring tool so you can check to see how well your security settings match a given
template, such as the Win2K Pro Gold Template. You run the scoring tool on a local system, and it compares your
security stance to a baseline template, giving you a summary score between 0 and 10. The higher your score,
the more closely you match the template used for comparison. To generate the score, the tool uses an elaborate
algorithm that analyzes the Service Packs and Hotfixes installed on the machine, the account and audit policy
settings, other security settings, and available services. This score is quite useful for comparing the relative
security stance of several different systems, but I don't get too hung up on the absolute score. You might find
that to support a given environment's needs, the maximum score you can get from the CIS scoring tool is 5 out
of 10. That might sound pretty bad, but you might require those security settings for the services you offer.
That's why I use the CIS scoring tool as a relative measure of security among several machines. If one machine
scores a 5, but another one ranks a 3, I know that the latter system deviates more from the baseline. The CIS
scoring tool, shown in Figure 7.23, is available for free at www.cisecurity.org.

Figure 7.23. The CIS scoring tool scores a Windows system against a security
template.

User-Mode RootKit Detection on Windows

Trust but verify.

—Ronald Reagan

Prevention is a good thing, but no defense is completely impermeable. Therefore, you need solid detection
capabilities for user-mode RootKits on your Windows systems. As with UNIX, file integrity checking tools are one
of the best methods for looking for the malicious changes introduced by user-mode RootKits on Windows. The
built-in WFP provides a modicum of security, and you should be alert to any dialogue boxes or log entries from
WFP telling you that a critical system file has been altered. You should investigate immediately if you see the
messages shown in Figures 7.15 and 7.16 earlier in this chapter.

Pagina 18 di 19Windows User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Although WFP provides some protection against file changes, you need to go further, employing additional file
integrity checking tools for your critical systems. These tools scan the system, looking for changes to critical
system files based on cryptographic hashes of known good files and settings. Fcheck is a free tool that performs
such functions on Windows, available at www.geocities.com/fcheck2000/fcheck.html. Additionally, the
commercial version of the Tripwire tool also runs on Windows systems, available at www.tripwire.com
bonus, on Windows, Tripwire also looks for alterations to critical registry settings, such as the SFCDisable key
that controls WFP and numerous other security configuration elements on the box. Several other commercial file
integrity checking tools are available for Windows, including GFI LANguard System Integrity Monitor and Ionx
Data Sentinel.

Beyond file integrity checkers, antivirus programs, such as those we discussed in Chapter 2, can detect many of
the user-mode RootKits when they are loaded onto a system, before they are installed. Most antivirus solutions
have signatures for several different user-mode RootKits on Windows. For example, when I first moved the AFX
Windows RootKit to my machine for testing purposes, my antivirus tool totally freaked out, preventing the
program from being accessed. Only by disabling the antivirus tool was I able to install the AFX tool for testing
purposes. So, by using antivirus tools, you'll raise the bar against casual attackers wielding user-
The bad guy will have to be smart enough to first disable the antivirus tool, or modify its signature base, before
installing the RootKit.

Furthermore, you should carry around a CD-ROM with third-party tools you can use to analyze your systems.
Include programs that look for strange port usage, such as the Fport and TCPView tools we discussed in
5. The AFX Windows RootKit is powerful, but it only hides information using those components of Windows that it
knows to alter. If you show up with a separate tool that you run from a CD-ROM, you will be much more likely to
get the real scoop on what's happening on your system. Interestingly enough, William Salusky's bootable Linux
CD-ROM, FIRE, also includes a few Windows tools on the same disk. Although the basic CD remains Linux
centric, this handful of Windows tools can be used to back the system up and conduct a forensics analysis of an
NTFS partition.

User-Mode RootKit Response on Windows

After you've backed up the RootKit-infected system for a forensics analysis, you'll really need to rebuild it from
scratch, using the base operating system install plus all patches and Hotfixes. Remember, you can't just rebuild
the system from the base install packages without patching it. If you do, the attackers will likely just break right
back into the machine using the same vulnerability they employed to get on the box in the first place. After the
system is back in production, you need to very carefully monitor it, using network- and host-based Intrusion
Detection Systems (IDSs). Also, monitor the logs of the machine very closely so you can quickly detect if the bad
guy returns.

 < Day Day Up >

Pagina 19 di 19Windows User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

