@MIEL

Function hooking

Function hooks refer to the broad technique of changing the regular execution flow of a
program or operating system to execute the attackers code instead. This class of
techniques is as old as the hills, and while it is usually easy to detect, a little bit of
ingenuity can make life difficult for security software.

One of the biggest challenges when dealing with function hooks from a defenders
perspective is that legitimate software (like firewalls, anti-virus etc) also use function
hooking to accomplish their goals. This makes determining whether a “hook” is benign
or malicious virtually impossible. We do not make this decision for you, but provide you
with all the possible information to track down the hook and the code it calls so that you
can decide for yourself whether it is malicious or not. Helios allows you to ‘unhook’
certain types of function hooks.

There are two basic ways that the flow of execution can be changed with hooks, they are
hooks that modify function pointers and hooks that patch the actual bytes of the
function (detour patching). These two techniques are explained below and then
illustrated both in userland and kernel mode.

Function Pointer Hooks:

Windows operations rely on arrays of function pointers to call code. An attacker picks a
function that he wants to hook, and modifies the function pointer address to point to his
code. As a result, everytime the function is called, the function pointer points to the
attackers code and it gets called in place of the legitimate function. Examples of this are
IAT hooks and SSDT hooks in userland and kernel mode respectively.

Function pointer hooks are usually easy to detect as all one needs to do is query the
appropriate function pointer tables and determine whether they point to the legitimate
code. This requires that one is aware of where the original code resides in the first place,
but sometimes it is enough to check that the code being called falls into the address
space of the correct module. It is difficult to determine whether a function pointer hook
is benign or malicious as there are many legitimate uses for these hooks.

Detour patches:

Detour patches (also known as in-line hooks) are the other form of function hooking that
can be used generically from userland or kernel mode. Instead of modifying a pointer to
a function (like the SSDT hooks or IAT hooks), the detour hook ‘patches” or overwrites
the actual code start of the function to call into the attackers code. Once the attackers
code is called, he can call the original function (minus his overwrite) and then modify
the return results.

Once again, detour patches can be used benignly, and Microsoft has used them with
hotfixes to solve bugs. In order to make life easier for themselves, Windows XP Service

Page 6 of 15

Lot

&



@ MIEL

Pack 2 onwards has a slightly different function prolog so that when the prolog bytes are
overwritten, a perfect 5 bytes will be overwritten without any alignment problems.

Original prolog
Push ebp
Mov ebp, esp

Modified prolog
Mov edi, edi
Push ebp

Mov ebp, esp

Detour hooks can be difficult to detect as an attacker does not necessarily have to
implement them within the first five bytes (it is of course, far easier and more convenient
to do this). There are many ways to detect detour patches, listed below are a few
common techniques:

1. Compare the start of a function in memory with the bytes on disk. This is useless
if the attacker is able to change the bytes on disk to reflect his patch in memory.

2. Parse the initial bytes to determine whether they contain a code branch such as a
jump or call operation. This is highly effective, but can generate false positives
when a legitimate patch is made.

3. Calculate a complete cryptographic hash of the function bytes on disk and
compare it against the bytes loaded in memory. This method is effective because
it can inform you of a detour patch or modification anywhere in the function.
However, it suffers because it cannot pinpoint the actual location where the
detour patch occurs (this can be solved by then comparing the functions at the
byte level).

4. In certain cases where one is aware that the function cannot branch to code
outside of its own module space, one can check that all code branches are intra-
modular. Any jump that targets the space of another module can be considered
malicious.

As we stated before, function hooks can occur either in userland or kernel mode
depending on the level of information that needs to be controlled. Occasionally, a
userland hook can be more effective and harder to detect than a kernel mode hook. This
is a typical case of the coolest technique not necessarily being the most powerful.

Page 7 of 15

Lot

&



@MIEL

Userland hooks:

As an example of how userland hooks work, let’s consider programs that wants to take
control of the send() function in Winsock. In order to do this, the malicious program
needs to ensure that its code replaces any calls to send() and after copying the buffer
data, passes the data to send.

The up-side to performing this sort of hook in userland is that you can effectively
change who is responsible for sending data. Consider a keylogger that needs to transfer
a logfile to a remote server. If the system has a personal firewall, it will alert the user
when the keylogger process attempts to access the Internet. Instead, the keylogger can
hook send() in iexplore.exe (Internet Explorer) and when Internet Explorer makes a
legitimate request (allowed by the firewall), the keylogger first sends out its data and
then sends IE’s request. This effectively bypasses the personal firewall as it sees that the
owner of the send request is Internet Explorer.

Function pointer hooks in userland:

Whenever code is called in another library, the calling process ‘imports” that code by
making an entry in its IAT (import address table) to point to the function that it is
calling. Whenever calls are made to the imported function, they are made through the
IAT address. Thus a rootkit that modifies the IAT address of a function to point to its
code will get called every time that function is called. This is perhaps the simplest form
of userland hooking, however it can be problematic because some applications may
dynamically load the library using a call to loadlibrary() and getprocaddress(), in this
case, there will be no entry for the function in the IAT.

Detour hooks in userland:

From an attackers perspective, detour hooking (overwriting the function bytes) is
prefered to function pointer hooking as it is more difficult to detect. The first thing to
understand with this technique is that every DLL gets loaded only once in physical
memory. After that, every process linked with that library gets an entry in its page
directory table that points to this one copy. Thus, even though every process believes it
has a different copy of ws2_32.dll, there is actually only one physical copy in memory
that is mapped via a virtual address with every process that wants to use it.

An attacker can choose to hook send on a process specific or system wide basis. If he
wants to modify it at the process level, he needs to inject his code into the victim process.
This can be accomplished by setting a CBT hook that gets called every time a process
gets created (technically, a CBT hook could be used system-wide, but this is inefficient),
or by injecting his code into the victim process using a method like CreateRemoteThread
(which allows the loading and execution of a library in another process space). Once his
code is injected, he modifies the initial bytes of send with a detour hook (see below).

Page 8 of 15

Lot

&



@MIEL

When Windows sees the request to overwrite the bytes in ws2_32.dl1], it realises that this
DLL is shared between many processes and that the write will affect all of them. So it
initiates a copy-on-write operation and creates another copy of ws2_32.dll in physical
memory. It then changes the directory entry of the process that asked for the write to
point to the new copy of the DLL. This way, only the process that requested the write
gets a modified version of the DLL.

If the attacker wants to modify the send() call system-wide, the copy-on-write operation
poses a problem, as he will receive a unique copy of the DLL which will not affect other
processes. To accomplish his task, he can however access physical memory and change
the bytes in the original single copy of ws2_32.dll in physical memory. This way, every
process that uses ws2_32.d1l will receive the modified DLL.

Kernel mode hooks:
The same two principles for hooks apply in kernel mode. We'll give an example of both
function pointer hooks and detour patches in kernel mode:

Function pointer hooking in kernel mode (System call table hooking)

The concept and implementation of system calls differs from O/S to O/S. For example, in
the UNIX world, system calls are made by setting up the appropriate registers and then
calling an interrupt (such as INT 80) to invoke the system call.

System call table hooks refer to hooks that modify function pointers to Windows native
API functions. These functions are called in kernel mode to perform all the basic tasks
that Windows needs to undertake to operate.

They are usually wrapped by a higher level function operating in userland. So, for
example, when you list the contents of a directory using the userland FindNextFile()
APIL, Windows will internally call the NtQueryDirectoryFile native API in kernel mode
to pass those results to explorer. Hooking these functions can be extremely powerful as
Windows relies on the data returned very heavily. An attacker in control of these
functions can decide what Windows ‘sees” on the system, while a defender can control
‘choke-points” or functions that malware is likely to use.

In the Windows world, when a userland function is called, it makes a context switch into
ring-0 to call the appropriate system call. This happens by the userland code calling a
‘stub’ function in NTDLL.DLL / USER32.DLL / GDI32.DLL or a similar module which
moves the appropriate system call number into the EAX register and then performs the
transition to ring-0 using the INT 2E or SYSENTER instruction.

The system call number that is moved into the EAX register is actually an offset into a
series of system call tables (there are 4 of them) the most popular of which are table 0 —
the SSDT (system service dispatch table) and the GDI function table. The SSDT functions

Page 9 of 15

Lot

&



@ MIEL

reside in NTOSKRNL.EXE (or NTKRNLPA.EXE for systems with physical address
extensions) whereas the GDI functions reside in WIN32K.SYS.

The 13 bit of the EAX register determines which of the four tables is to be looked up. If
itis 0, the SSDT will be queried, whereas if it is 1, the GDI table will be queried.

In order to hook the system service tables, an attacker has to simply figure out the
system call number of the function he wants to hook and then replace the function
pointer at that offset into the appropriate table with his code.

The easiest way to discover the service number is to look at the stub function that sets up
the switch to ring-0 as it moves the table number / service number combination into the
EAX register.

As far as NTDLL.DLL is concerned, the stub functions are all prefixed with ‘Zw’. They
call corresponding code in NTOSKRNL.EXE which is prefixed with ‘Nt". So the system
call ‘NtQuerySystemInformation” in NTOSKRNL.EXE will be called by the stub
‘ZwQuerySystemInformation” in NTDLL.DLL. The Zw* functions are only responsible
for setting up the service number in the EAX register and then performing the context
switch. Interestingly NTDLL.DLL also has Nt* functions, which have the same code as
the Zw* stubs. Similarly, NTOSKRNL.EXE has Zw* functions which are identical to the
stub in ring-3. This can be handy as having the Zw* stubs accessible in NTOSKRNL.EXE
(which runs in ring-0) means you will have easy access to the service number.

To get the service number, all one needs to do is disassemble the Zw function, the first
byte will be the MOV EAX instruction, the next DWORD will be the service number.
Once this is obtained, one gains access to the appropriate system call table and replaces
the function at [servicenumber] offset.

Finding the service tables can be accomplished in multiple ways. The easiest way to
obtain the address of the SSDT table is to take it directly from NTOSKRNL.EXE where it
is exported. A simple statement like:

__declspec(dllimport) sdt KeServiceDescriptorTable;

is enough to gain the tables address. However, importing the symbol is not particularly
stealthy as there will be an entry in your modules import address table showing that this
symbol is being loaded.

Luckily for us we can obtain the service table entries rather easily. If we call the function
PsGetCurrentThread() we obtain the _ETHREAD structure of the currently executing
thread. The first DWORD of this structure is a pointer to a _KTHREAD structure. At
offset OxEO in the " KTHREAD is a pointer to a member called ServiceTable.

Page 10 of 15

Lot

&



@MIEL

This ServiceTable entity (also called the shadow table) is four back to back structures
each representing one of the four tables (NTOSKRNL.EXE, WIN32K.SYS and the other
two unknown tables). Each table is represented by a 4 DWORD structure, the first
DWORD being the pointer to the table and the third DWORD being the total number of
entries (services) in the table.

It is also possible to gain access to the shadow table through the _KPRCB (Kernel's
Processor Control Block) structure which is always located at Oxffdff120. At offset 0x04
is the currently executing thread KTHREAD structure. Once again OxEO into this
structure, we find the shadow table.

After finding the table, the attacker replaces the appropriate function pointer to point to
his code. In his code, the attacker will usually call the ‘real” original function and either
filter the parameters passed to it (filtering the input data) or modify the return data of
the function (filtering the output / result data). From a defensive perspective, one often
curtails the functionality of the API by returning an access denied status code and not
calling the original code (for example if one wishes to block access to
\ \device\ \ physicalmemory, one will monitor any requests to this device and then
terminate the API with an access denied return code).

Defending against service table hooks is relatively easy as the actual code already exists
in the relevant module such as ntoskrnl.exe (or ntkrnlpa.exe for systems with physical
address extensions). One can compare the bytes in memory against the bytes in the
physical file on disk, or ensure that each of the function pointers falls in the kernel
memory space. Security software such as firewalls and antivirus products regularly
hook the SSDT to perform their functions. It is not difficult however, to determine what
kernel module’s address space the hook points to and thus, one can determine which
driver is actually hooking the table.

Functions that are regularly hooked by malware include NtQueryDirectoryFile to hide
malicious files and NtQuerySystemInformation to hide processes from task manager.

Detour Patching in kernel mode:

Instead of modifying a pointer to a function (like the SSDT hooks above), detour patches
that overwrite the actual start of the function to call into the attackers code can be used.
Once the attackers code is called, he can call the original function (minus his overwrite)
and then modify the return results.

An example of the detour patch in kernel mode would be to take one of the system call
functions, but instead of modifying its pointer in the SSDT, the attacker goes to the code
of ntoskrnl.exe (or ntkrnlpa.exe for systems with physical address extensions) and
changes the initial bytes to perform a jump to his code. This method can become slightly
complicated as there are functions in kernel mode that don’t have a prolog, thus making
it more complicated for the attacker to overwrite the bytes as he has to be concerned

Page 11 of 15

Lot

&



@MIEL

about what instructions are being modified. To perform this generically, the attacker
will have to implement some form of disassembly functionality that allows her to figure
out how many bytes each instruction is going to take and then overwrite the appropriate
number of bytes after saving the legitimate instructions.

Direct Kernel Object Manipulation

Till now we’ve dealt with hooking functions. While this is an extremely effective and
safe method of subverting security, it is not always very stealthy. A more stealthy but
potentially less stable method of hiding information is by modifying the actual data that
the kernel maintains. This technique is known as Direct Kernel Object Manipulation and
it was pioneered by fuzen_op with the Fu rootkit.

The basic idea is that the kernel maintains the system state through various data
structures. All the functions of the operating system query this data. If one were to
remove information from these data structures, the kernel and the corresponding
functions would be none the wiser. This is particularly effective when hiding processes.

The Fu rootkit demonstrated how to hide a process from Windows without any function
hooking. The kernel internally maintains a circular linked list of structures known as
EPROCESS structures. Each one of these EPROCESS nodes in the linked list represents a
running process on the system and it stores all the information about the process such as
its running threads, path etc. All Windows functions that deal with process data will at
the lowest level query the EPROCESS structures. The Fu rooktit would hide a process by
unlinking it from the linked list. It does this by pointing the next node pointer of the
previous node to the node following it and pointing the previous node pointer of the
following node to the previous node (excuse that complicated sentence, this is best seen
diagramatically). This way, when the linked list is walked, there is no reference to the
hidden process. Interestingly enough, since the EPROCESS structures are not connected
with thread execution, the process is still able to get processor time and continue
executing!

From the defender’s point of view, the most obvious way to tackle processes hidden in
this manner is to monitor the thread scheduling since the actual threads themselves
must continue to execute. Each thread should have a corresponding EPROCESS
structure, if there is a thread that is operating without an EPROCESS structure parent
process, it has probably been hidden from the EPROCESS linked list. Furthermore, the
information stored in the _ETHREAD structure for each thread gives us a pointer to the
original EPROCESS entry (that is now orphaned and hanging in space) so we should be
able to access all the information about the process and even ‘relink’ it into the list.

Physical Memory Tricks
All process memory in Windows for each process is referenced as virtual memory. In
other words, each process believes that it has the entire RAM space in which to play. In

Page 12 of 15

Lot

&



@ MIEL

actual fact, the actual mapping to the system’s physical memory happens at a much
lower level. If an attacker can gain direct access to physical memory, she will be able to
modify the process spaces of any arbitrary process as well as perform kernel level
operations without having to be in ring-0. In short, giving an attacker access to physical
memory is not a good idea.

The simplest way to protect the integrity of physical memory is to prevent the attacker
from being able to open a handle to it. This can be accomplished by hooking the
NtOpenSection() system service in NTOSKRNL.EXE. The third parameter to this
function is a pointer to an ObjectAttributes structure that contains the name of the object
being opened as a UNICODE string. If this object is \ \device\ \ physicalmemory, one
can block the call by returning a STATUS_ACCESS_DENIED.

This is insufficient as in Phrack ’59, crazylord documented a simple bypass to this check.
The basic problem is that one can create a symbolic link to \ \device\ \ physicalmemory

with an arbitrary unfiltered name and then pass this symbolic link to NtOpenSection.
Windows will not resolve the symbolic link to the proper name and then call
NtOpenSection but will call it with the symbolic name itself. Thus, one can bypass the
filter.

The easiest way to prevent this is to stop anyone creating a symbolic link to physical
memory. This can be be accomplished by hooking NtCreateSymbolicLinkObject and
monitor the fourth parameter which is a pointer to a UNICODE_STRING that will
contain \ \device\ \ physicalmemory if someone is trying to create a symbolic link to

physical memory.

Page 13 of 15

late|

&



@MIEL

Hidden Processes

Hiding a malicious process and its execution time from the system is one of the most
important things for an attacker to do. If the process is visible, it is highly likely that a
power user will be able to kill it. It is not exactly stealthy either to steal large amounts of
CPU cycles and not have them accounted for.

Processes can be hidden using a variety of methods, including an SSDT hook or in-line
hook on NtQuerySystemInformation. This function is queried by the Windows task
manager to obtain the list of running processes. There is also a DKOM method of hiding
processes. When a process starts, Windows creates an EPROCESS structure for it
containing all the information related to that process. This EPROCESS structure is part
of a linked list of similar structures that collectively give Windows information on all the
running processes. An attacker can modify the linked list entries to “unlink” his process’
EPROCESS structure from the list. For all practical purposes, Windows will believe that
this process does not exist. This is the technique that was pioneered by the Fu rootkit
authored by fuzen_op.

Malware can also remove its entries from the handle tables or PspCidTable as this is
virtually a single point of information that Windows relies on. The FuTo rootkit
authored by Peter Silberman is a fine example of how effective this technique is.
Detecting a process that is hidden in this manner can be cumbersome, but it is possible.

Detecting hidden processes can be done in a variety of ways.

1. Check for hooks on the NtQuerySystemInformation function to ensure that the
function is returning reliable information.

2. Manually walk the EPROCESS linked list and compare that information with
the results of NtQuerySystemInformation.

3. Brute-force the process ID space using the OpenProcess function and look at its
return values, if a certain PID returns a valid handle but does not feature in the
system’s information lists, it has been hidden. This technique is the technique
used by F-Secure’s BlackLight tool.

4. Brute-force the process ID space in kernel mode. For all practical purposes this is
identical to the check above, but it is performed in kernel mode.

5. Manually walk the threads linked list and determine that all threads have a
valid EPROCESS attached to them. If the thread is ‘orphaned’, it has probably
been hidden.

6. Take control of the Windows swapcontext function (the thread scheduler) and
maintain a list of threads and their corresponding EPROCESS structures. If a
thread doesn’t have an EPROCESS structure, it has been hidden. This technique
is credited to Kimo Kasslin and is by far one of the most effective checks for
hidden processes simply because if the malicious process wants CPU time, it
will have to have its thread swapped in and out.

Page 14 of 15

Lot

&



@ MIEL

Hidden files

For a rootkit to be succesful, it has to hide its files from the user on disk. Failure to do so
will result in a quick discovery of the subversion and corresponding deletion of the
malicious files. Hiding files is thus a standard feature of all rootkits. Files can be hidden

in the following ways:

1.

Hooking the NtQueryDirectoryFile native API function that is responsible for
generating listings of files and directories. This can be accomplished with an
SSDT or in-line hook.

Hiding the files in an NTFS alternate data stream. These alternate data streams
are not generally visible to the system components such as explorer and can only
be accessed by name, thus making them difficult to detect. An NTFS alternate
data stream can hide any file ‘behind” another file, for example, an executable PE
file behind an ASCII text file.

Detecting hidden files can be complicated depending on what length the attacker has
gone to to hide the data. Some ideas that can be used are:

1.

Compare the results obtained by querying the regular Windows file functions
against a list of files generated by parsing the low-level disk structures (such as
the FAT and NTFS data). This form of cross-view detection is extremely
powerful. The technique is credited to Mark Russinovich of SysInternals, and is
used in his patent-pending tool Rootkit Revealer. However, a non-persistent
rootkit (that doesn’t write itself to disk) will not be detected this way. An attacker
could also “drop’ code into an existing system file and change that files execution
path, thus evading detection.

Monitor and block access to NTFS alternate data streams. This can be tricky as
Windows itself has some legitimate uses for alternate streams as do certain anti-
virus products. However, by white-listing known-good programs, one can
effectively disable the alternate data stream ‘feature’ while having the system
function normally.

Page 15 of 15

Lot

&



