

 < Day Day Up >

UNIX User-Mode RootKits

Girl, you know it's true!

—From the 1989 hit song "Girl You Know It's True" by Milli Vanilli, the pop music

duo who revealed that they did not actually sing any of their hit songs and instead

lip-synched their way to the top of the charts

RootKits were originally created for UNIX systems. UNIX environments are very well-suited to

RootKit attacks, given their reliance on the root account. The root account is sometimes called

the superuser account, given that it has all power on a typical UNIX system. From a root-level

account, an attacker can completely reconfigure the box, overwrite existing applications,

change logs, and view any data stored unencrypted on the target machine. Additionally, UNIX

administrators rely very heavily on a handful of command-line programs to determine the

status of their systems. With root-level access, an attacker has all of the permissions required

to replace these command-line programs, altering the system to suit the attacker's needs.

Given the power of root and reliance on individual command-line tools, UNIX is very fertile

ground for RootKits.

The first very powerful UNIX RootKits were discovered in the early 1990s, replacing a few

executables on victim UNIX boxes. They primarily targeted SunOS, but were rapidly ported to

other UNIX systems popular then, including DEC Ultrix, HP-UX, and others. Given their inherent

usefulness for the bad guys, these vintage 1990 RootKits were shared only among a handful of

the most elite attackers. To prevent system administrators from deploying defenses against

these RootKits, the attackers kept them very close to the vest in the early years. They were

distributed among bulletin board systems, Internet Relay Chat, and a handful of esoteric FTP

sites on the Internet.

Today, however, anyone can download a very powerful RootKit from a variety of freely available

Web sites we'll discuss throughout this chapter. Also, today's RootKits are even more powerful

than the RootKits of yesteryear, transforming numerous programs on a system to custom tailor

the machine for the attacker. The tools bundled together in most user-mode RootKits on UNIX

can be broken into five different areas:

� Binary replacements that provide backdoor access. These tools are the heart of the user-

mode UNIX RootKit. By overwriting various programs and services used to access the

machine, an attacker uses these replacements to log in to the system through various

backdoors. When the backdoors are used, the attacker is immediately granted root

privileges on the target system.

� Binary replacements to hide the attacker. These tools overwrite existing binaries on the

system, replacing them with Trojan horse versions that let an attacker hide. These new

binaries lie to users and administrators about the attacker's files, processes, and network

usage on the victim machine.

� Other tools for hiding that don't replace binary programs. These programs let attackers

alter the system to hide their nefarious activities, although they don't replace commands.

Instead, they support the RootKit by including features such as altering the last

modification time of a program to disguise the alterations caused by installing the RootKit.

Others even remove evidence of particular account usage on the box. Still others let the

attacker edit logs.

� Additional odds and ends. Many UNIX RootKits also include various other tools useful to

an attacker on the target system. Some RootKits come with a built-in sniffer, for

Pagina 1 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

gathering traffic from the LAN, which might include valuable clear-text user IDs and

passwords. Backdoor shell listeners, like the tools we covered in Chapter 5, are another

popular option bundled with RootKits.

� Installation script. This program opens up the other bundled RootKit tools, compiles them

if necessary, and moves them to the appropriate location. Rather than manually pushing

every binary in place and handcrafting it to fit properly in the system, automated RootKit

installation scripts run through the entire installation process, which usually requires a

mere 10 seconds or less. After the replacement programs are loaded in the proper places,

this script resets the last modification date and might even compress or pad portions of

the binary replacements so that they are all the same length as the original programs.

If you think about each of these different categories all bundled together in a single package,

you can see that RootKits really are kits, handy collections of tools used to transform a system

at the attacker's whim. An attacker wielding a user-mode UNIX RootKit is kind of like a doctor

making a house call. When doctors show up at a house call, they carry a little black bag with a

variety of tools they'll need to alter their patient's bodies. It's impractical and unnecessary for

the doctor to bring an entire operating room, when a single black bag can hold everything

needed by the doctor. When breaking into a system, the attacker brings along a RootKit, which

includes a whole host of useful individual tools for manipulating the system. The attacker

doesn't need to rebuild the entire operating system, when only a few select tools nicely bundled

together in a RootKit will accomplish the goal. Of course, this analogy does break down, in that

the doctor's goal is to improve the health of a patient, whereas the attacker's goal for the target

computer is quite the opposite.

The computer underground has created a huge variety of different types of RootKits for all

flavors of UNIX systems, including Linux, BSD, Solaris, HP-UX, AIX, and others. These RootKits

have a variety of quirky and exotic names, including LRK, URK, T0rnkit, Illogic, SK, ZK, and

even Aquatica. Although each RootKit varies in the particulars of what it replaces and how it is

configured, all user-mode UNIX RootKits follow the same general themes and methodologies.

Therefore, we can learn a lot about how to defend against such attacks by studying a handful of

the more powerful and widely used RootKits. To get a better feel for how user-mode UNIX

RootKits alter a target system, let's look at a few specimens in more detail, namely the Linux

RootKit (LRK) family, the Universal RootKit (URK), and some particularly interesting RootKit-like

tools called RunEFS and the Defiler's Toolkit.

LRK Family

One of the most widely employed user-mode RootKits today, and indeed over the past several

years, is the Linux RootKit family of tools. I refer to LRK as a family, because it includes several

generations of RootKits, each based on continuous improvement over previous incarnations.

The firstborn of the family, named LRK1, was released in early 1996 by someone named Ira. A

variety of other developers picked up the LRK mantle by adding new features to the kit or

improving the capabilities already built in. The development of the LRK family, shown in detail

in Table 7.1, is a classic example of software refinement over time, just as we see with

legitimate commercial software tools. Based on actual experience gained by using RootKits to

attack real-world environments, various software developers with names like Cybernetic and

Lord Somer constantly improved the tool, releasing LRK2 through LRK5. There are even reports

of an LRK6 release, although it is not yet widely available as of this writing.

Table 7.1. Development of the Linux RootKit (LRK) Family through
Successive Releases

RootKit Tool Category
RootKit

Component
Purpose of Program

Linux

RootKit

1 2 3 4 5

Pagina 2 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Binary replacements with

backdoor

login Authenticate users and log

them in

X X X X X

 rshd Allow remote shell access X X X X

 chfn Alter a user's full name or

phone number in the

GECOS field

 X X X X

 chsh Change a users' default

shell
 X X X X

 inetd Listen on the network for

services such as Telnet and

FTP

 X X X X

 passwd Change a password X X X X

 tcpd Filter connections for

certain applications using a

TCP wrapper

 X X X

 sshd Access the machine using

an encrypted session
 X

 su Change user accounts X

Binary replacements that hide

attacker

netstat Look at network statistics X X X X X

ps Look at running processes X X X X X

top Look at the top running

processes consuming the

most CPU cycles

X X X X X

ls List files X X X X

du Look at disk usage X X X X

ifconfig Look at network interface

configuration

X X X X

syslogd Record system logs X X X X

killall Terminate processes given

a process name

X X

crontab Schedule programs to run X X

pidof Find the process ID of a

running program

X X

find Locate a file X X

Other tools for hiding (these

support the RootKit, but do not

replace existing commands)

fix Pad a file and change file

access and update dates

X X X X X

 zap2 Delete accounting data X X X X

 wted Edit accounting data X X X X

 lled Edit the last login

information

X X

Other odds and ends (these bindshell Grant backdoor shell X X X X

Pagina 3 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Table 7.1 highlights three important aspects of the LRK family. First, LRK1 was quite powerful

right out of the gate, including replacements for several important Linux programs like login,

netstat, ps, and top. With the full source code of all Linux commands publicly available,

attackers were able to easily graft RootKit functionality directly into the operating system,

without having to reverse-engineer any functionality. Implementing a RootKit is far easier with

access to the source code, because the attacker can reuse a great deal of the existing program

code and just sprinkle in some RootKit features. Furthermore, numerous developers have added

functionality to the baseline tool over the years, morphing it considerably. Finally, the family's

continuous improvement over time has made it even more formidable. As a result of this

continual evolution, the LRK family is perhaps the most full-featured user-mode RootKit

available today. To get a better feel for its capabilities, let's analyze the various components

built into the latest versions of LRK.

LRK Binary Replacements That Provide Backdoor Acces s

The LRK family includes a variety of executables that replace existing programs associated with

logging in and using accounts to implement backdoor access to the machine. Some of these

backdoors provide remote root-level access across the network. Others require an attacker to

log in to a nonroot account first, and then let that attacker escalate privileges to root level by

running some local command and providing a backdoor password. Each of the RootKit backdoor

components included in LRK is illustrated in Figure 7.2.

Figure 7.2. LRK binary replacements providing backdoor access.

One of the most fundamental of these backdoor replacements is the familiar login program,

built into LRK since the heady days of the original LRK1. A normal login program asks users for

their user IDs and passwords when they log in at the system console or via Telnet. The LRK

Trojan login program replacement acts the same way, but with an added bonus. If someone

types in a special backdoor password, that user is automatically given root-level control of the

support the RootKit, but do not

replace existing commands)

access

linsniffer Sniff data from the network X X X X

sniffit Sniff data from the network X

sniffchk Verify that sniffer is

running

X X

Installation script makefile Install the RootKit X X X X X

Pagina 4 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

system. With the magic password, the attacker can log in directly as root. Because this

backdoor password is built into the executable file, the attacker can use it again and again,

even if an administrator changes the real root password. The backdoor root password remains

the same.

The LRK login substitute also defeats security controls and logging on the victim machine. As a

security precaution, many system administrators configure their UNIX systems to prevent direct

log in by users as root. On such machines, administrators need to log in to the system first as a

nonroot user, and then change to a root-level account, using the su command. By preventing

direct login as root, an attacker would not be able to remotely guess password after password,

attempting to log in as root. Forcing users to rely on su to get root access also fosters

accountability for administrators, as their actions can be tracked to individual user accounts

that have employed the su command. However, such functionality is mighty inconvenient for

attackers. Therefore, the LRK version of the login program lets attackers log in directly as root

by using the account name "rewt". Note that the account rewt and the backdoor password are

not stored in the normal account and password files on Linux machines (/etc/passwd

and /etc/shadow). Instead, the account and password are built directly into the executable

programs themselves. The password is configured when the RootKit is compiled, but several

defaults are often used. Early versions of the LRK family use a default password of lrkr0x, which

apparently stands for Linux RootKit Rocks. Other versions use the word satori as their default

password. Of course, most attackers alter the defaults, providing their own password.

The rshd and sshd backdoor replacements included with LRK work in a similar fashion to the

login program. When a user is prompted for a password for remote shell (RSH) or secure shell

(SSH), the attacker provides the backdoor password to gain remote root-level access. The sshd

backdoor also includes another feature very useful to an attacker: All shell traffic sent across

the network is encrypted. That way, if a suspicious system administrator tries to monitor the

connection with a sniffer, the attacker's commands will be invisible inside the encrypted

session. Rounding out the remote access backdoors in LRK, the inetd and tcpd replacements

include a backdoor listener that provides a remote shell on any TCP or UDP port of the

attacker's choosing. By default, this LRK backdoor listens on TCP port 5002.

Beyond these remote access backdoors, LRK also includes a variety of local backdoors that

allow an attacker logged into the box with a nonroot account to jump instantly to root

privileges. When logged into any account, the attacker can invoke the change finger command,
chfn, which is normally used to alter a user's name or phone number stored in the so-called

GECOS field of the /etc/passwd file. With the LRK version of chfn, the attacker can provide the

backdoor password instead of new user information for instant root access. Likewise, LRK

includes a new version of the change shell command, normally used to change which

command-line shell a user is assigned when logging in. By typing the LRK backdoor password in

place of a shell name, the attacker gets root. Also, a replacement for the passwd program

accepts the backdoor password, in addition to its normal function of allowing users to change

their passwords. Finally, the su command also includes backdoor password functionality.

Normally, su lets users change their login privileges to those of another user, if they know that

user's password or they are operating as root. By providing the RootKit version of su with the

backdoor password, the attacker is immediately given root access. Whew! That's a lot of

backdoors. All told, LRK includes at least nine of them, lacing the system with openings for the

bad guy to access.

LRK Binary Replacements That Hide the Attacker

In addition to backdoors, LRK replaces several programs that system administrators typically

use to determine the status of their systems, including tools for managing running programs,

network settings, the file system, and system logs. These replacements are illustrated in Figure

7.3. In essence, the attacker alters each of these commands so that they lie to the system

administrator. These commands act as the eyes and ears of the system administrator. With

altered eyes and ears, the administrator cannot determine the true state of the system. To

understand how these different hiding mechanisms work, think about what the bad guys need

Pagina 5 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

from a RootKit. After taking over a target system and installing a RootKit, the attacker will likely

run some programs on that machine. These programs could be additional backdoor listeners,

other attack tools used to scan for more vulnerable systems, or individual exploits used to take

over more targets. Beyond the RootKit itself, these additional attacker programs on the system

will require the attacker to:

� Create running processes. The attacker's tools will create processes on the system, which

could be detected or even killed by a nosy system administrator.

� Use the network. The attacker might run a sniffer to capture user IDs and passwords, as

well as a backdoor port listener to provide remote shell or GUI access. Unless the sniffer

is hidden, administrators could discover that the interface is in promiscuous mode, tipping

them off that a sniffer is in use. Likewise, unusual local port listeners could trigger an

investigation.

� Create directories and files. Attackers usually write various program and configuration

files to the victim machine's file system. Also, bad guys often store stolen information,

such as password files, pirated software, confidential documents, and pornography on the

victim machine. If they are not hidden, these files could reveal the attacker's presence.

� Generate logs. As the attacker manipulates the system, normal logging will show several

incriminating events. To remain stealthy, the attacker needs to make sure these events

never show up in the system logs.

Figure 7.3. LRK binary replacements that hide an attacker on a system.

Without the attacker's intervention, a diligent system administrator might notice each of these

activities. To address this situation, LRK comes to the attacker's rescue by including

replacements for various tools used by system administrators to find these anomalies.

First, LRK includes several replacements that hide running processes on the machine. To use

this capability, the attacker must include the name of the process to be hidden in the

file /dev/ptyp. On a stock Linux system, there are files

called /dev/ptyp0, /dev/ptyp1, /dev/ptyp2, and so on using hexadecimal notation up

to /dev/ptypf, but there aren't typically any real files named simply /dev/ptyp. Depending on

the configuration of this RootKit file, various commands on the system can hide processes

based on their full name, substrings of the process name, the user terminal (known as the tty)

that the process is attached to, or even all root-level processes. Then, LRK replaces the ps, top,

and pidof commands, all of which are used to determine which processes are actively running

on a system. Furthermore, LRK overwrites the killall command so that the attacker's hidden

processes cannot be killed using the command. That way, even if the administrator is

Pagina 6 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

miraculously able to discover it, the attacker's running process cannot be stopped using the
killall command. It's important to note, that although the attacker's processes are hidden by

the ps, top, and pidof commands, they will still be visible inside of the /proc directory, a

component of the file system created by the kernel to show the status of all running processes

and the kernel itself. In Chapter 8, we'll explore how kernel-mode RootKits hide even the

evidence shown in /proc.

LRK includes a modified version of crontab, which is used to start various programs at specific

times. By default, the altered version of crontab automatically activates the program names

stored by the attacker in the file /dev/hda02. Again, Linux systems normally include files

called /dev/hda1, /dev/hda2, and so on to indicate portions of the hard drive, but on a stock

Linux machine, there are no files called /dev/hda02. The zero makes it different. Whereas the

normal crontab's configuration is available for the system administrator to see, this alternative

crontab uses this additional hidden configuration file.

Beyond process-related hiding, LRK also supports hiding network usage. On some older Linux

systems, the ifconfig command shows whether the network interface is in promiscuous mode,

gathering all traffic from the LAN. LRK replaces ifconfig so that it never shows promiscuous

mode, thereby disguising sniffers. Additionally, administrators frequently use the netstat

command to show which TCP and UDP ports are listening for traffic. The LRK version of netstat

shows all port usage, except those ports configured by the attacker in the file /dev/ptyq. As

with the /dev/ptyp file, /dev/ptyq isn't normally included on a system.

Only /dev/ptyq0, /dev/ptyq1, and so on up to /dev/ptyqf should be present. By default, the LRK
netstat hides TCP and UDP port 31337, although the attacker can configure the system to hide

any other additional ports.

LRK really shines in its ability to hide files in the file system. The attacker creates the

file /dev/ptyr, which contains a list of files to be hidden. The ls command, normally used to

show the listing of a directory, will omit from its output any files that are hidden. Similarly, the
find command, used to search for files, won't be able to find any of the hidden entries. Finally,

the du command, which shows the disk usage of the hard drive, will omit the space taken up by

the attacker's hidden files. With each of these replacements, finding the attacker's tools on the

system could prove quite difficult for a system administrator. It's important to note, however,

that by default, the ls command included in LRK will show all files, including the hidden ones, if

it is invoked with the "minus slash" flag, as in "ls -/". Attackers can turn off this default "ls -
/" behavior, but many of them leave it on so that they can find their own files hidden on a

machine. There are few things worse for attackers than taking over a system, installing a bunch

of backdoors, and then cluelessly groping around, trying to guess the location of all of the stuff

they've just hidden. Hiding can be a two-edge sword, confusing the attackers too. The minus

slash option eliminates the need for the attacker to guess where all of the hidden files are

located.

Finally, LRK replaces the syslog daemon (syslogd), the program that is used to record all logs

on the system. The LRK version of syslogd will not record any log entries that contain a string

that matches the contents of the attacker's configuration file, /dev/ptys. Attackers might enter

their own source IP address in that file, so that all log events related to their source machine

will be omitted from the file. Likewise, specific types of events could be omitted, simply by

including an identifying string associated with each type of event in the /dev/ptys file.

Now, take a step back and consider the configuration files associated with each of these types

of hiding: /dev/ptyp, /dev/hda02, /dev/ptyq, /dev/ptyr, /dev/ptys. They look like a bunch of

gobbledygook that you might expect to be in the innards of your Linux system, right? That's

what the attackers want: RootKit configuration files that blend in with the machine. Also, notice

that these files are all located in the /dev directory. Normally, this directory contains a

comprehensive list of all devices associated with your system, including various components of

the hard drive, the CD-ROM drive, user terminals, audio devices, the mouse, and others. For a

typical Linux machine, there are an enormous number of rather esoteric names in this

directory. On my own Linux system, there are exactly 5,052 entries listed in the /dev directory.

Pagina 7 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

You might have more or less, depending on the configuration of your system. Still, that's a lot

of files for an administrator to inspect looking for a few unusual entries.

Furthermore, this directory normally contains several devices with the name pty followed by a

character or two. Normally, these devices are associated with open terminals on your system,

such as a console or Telnet login. By plopping a few LRK configuration files in the /dev directory

and giving them names that match closely with the terminal devices normally included in /dev,

the LRK configuration files are nicely camouflaged. Furthermore, after installing the RootKit, the

attacker could edit these configuration files so that they themselves are hidden, simply by

loading each configuration file name into /dev/ptyr, the list of hidden files.

Suppose, however, the attacker is in a hurry, and forgets to hide these tell-tale configuration

files. In this case, you might be able to spot them in your /dev directory, discovering the

attacker on your system. Is this a sure-fire way to find LRK in all cases? Sadly, the answer is

no. Keep in mind that the LRK family source code is fully available on the Internet. Therefore,

even a rushed attacker with very limited programming skills could easily change the location of

any of these configuration files by simply editing one line of code per file to make LRK look in a

different location for its configuration. Replacing /dev with /bin in the source code requires less

than a dozen keystrokes, and would totally relocate the LRK configuration files. Alternatively, an

attacker could alter the LRK source code to make it automatically hide these configuration files,

wherever they might be located. By simply changing the code so that it automatically hides the

configuration files, the attacker won't have to remember to hide them. It's all taken care of in

the software itself. So, if files such as /dev/hda02 and /dev/ptys show up on your system, you

should certainly investigate the box in more detail. You might have LRK installed by a sloppy

attacker. However, you cannot rely solely on this mechanism to identify LRK-infected systems.

Other LRK Hiding Tools

LRK's subterfuge goes beyond just file replacements. The kit also includes a variety of

additional tools to hide the attacker's presence, shown in Figure 7.4. As we've seen, when LRK

is installed, it changes over a dozen different files located all over the victim machine's file

system. On most standard Linux file system implementations, each and every file includes three

time-related fields: an indication of the last time the file was accessed (known as the a_time), a

time when the file was last modified (called the m_time), and the creation time of the file (of

course, that's the c_time). These time-related fields are used to determine the exact date and

time when each event occurred. As it overwrites existing files with Trojan horse replacements,

the LRK installation process modifies each of these time values. If you ever notice any of these

time values mysteriously changing for critical system files on your machine, two things could

have occurred. First, it's possible that a system administrator just patched the system, which

would update the time fields for each updated file as well. Alternatively, you might just have a

RootKit infestation.

Figure 7.4. Other LRK hiding tools.

Pagina 8 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

As you might expect, the authors of LRK want to avoid detection by suspicious administrators

looking at file creation and update times. To achieve this goal, the authors of LRK included a

tool called fix in their RootKit. The fix tool resets the a_time, m_time, and c_time for each file

replaced by the RootKit to its original, pre-RootKit value. Therefore, an administrator won't be

able to detect any changes in these times. It doesn't stop there, though. The fix tool goes even

further in disguising changes. Suppose someone uses the noncryptographic checksum algorithm

cyclic redundancy check to look for changes to critical system files. For example, an

administrator could use the Linux cksum program to determine this value, which uses an

algorithm to combine all of the bits in a program together to create the checksum. In addition

to modifying the various time fields associated with a file, LRK's fix tool also pads programs so

that their noncryptographic checksum matches the original value as well. That's pretty devious!

It's important to note, however, that this padding mechanism built into the fix tool only works

for the CRC algorithm included in the UNIX cksum command. As we'll see later, the fix tool

won't work for cryptographically strong hashing algorithms, such as MD5 or SHA-1.

LRK's other hiding tools let the attacker mask the use of accounts on the target system. On a

UNIX system, several files record information about who has logged into the system, including:

� utmp. This file stores information about who is currently logged into the machine. The

contents of this file are consulted when a user runs the who command.

� wtmp. This file contains information about every user who has ever logged into the

machine.

� btmp. This file contains information about bad logins, such as when a user mistypes a

password or when an account gets locked out.

� lastlog. This file lists the last login date and time for each user, as well as the source

address of that login. For some UNIX services, this data is displayed when the user logs

in. For example, when you log into a UNIX machine, it might say, "Your last login was at

2:38 AM on May 1, from www.counterhack.net." All of this data is retrieved from the

lastlog file.

These files are not stored in plain, old ASCII, and therefore cannot be edited using a standard

file editing tool. Instead, attackers require a specialized tool to parse these files and edit them

to cover their tracks. Of course, LRK includes just such a tool, called Zap2, to edit each of these

files. Zap2 blanks out all utmp, wtmp, btmp, and lastlog information for a given user ID

selected by the attacker. The user ID is still listed in these files; it's just that the login date and

time information for that user is blanked out. Another LRK tool, called wted (short for wtmp

Pagina 9 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

editor) goes even further. Rather than just blanking out information associated with users, this

tool lets an attacker completely eradicate any information in utmp, wtmp, and btmp associated

with a given user or machine on the network. Zap2 removes all login information about the

user, but leaves the user's name. Wted can remove every indication that the user has ever

logged into the box. In older LRK iterations, a similar tool called lled implemented similar

capabilities for the lastlog file. However, this helpful command was removed from later

packages.

Other LRK Odds and Ends

Although LRK's main focus is on replacing various programs built into the system, it also

includes several additional new programs not originally included in the operating system. These

miscellaneous tools round out the kit by giving the attacker additional access and information

about the system. One of these programs is the very properly named bindshell, which creates a

backdoor shell listener on a TCP port specified by the attacker. This tool is roughly equivalent to

the backdoor listeners we discussed in Chapter 5. An attacker activates the LRK bindshell

program, which can listen only on TCP ports. Then, from across the network, the attacker uses

Netcat in client mode to connect to the appropriate port where bindshell silently waits.

LRK also includes a sniffer so the attacker can gather sensitive information transmitted in clear

text across the local network. The so-called linsniffer tool built into LRK automatically grabs

user IDs and passwords for FTP and Telnet connections. Linsniffer is very simple, only grabbing

account information and dumping it to a file. However, if you boil down what attackers really

want from a sniffer, simple little linsniffer addresses their most pressing need. Older members

of the LRK family included a more powerful sniffer, called sniffit, which includes filtering

capabilities for a variety of different services. However, because it was more complex to

configure, sniffit was omitted in later releases in favor of the far simpler but more limited

linsniffer.

Finally, LRK also includes a program called sniffchk. This simple script just tells the attacker

whether the sniffer is in fact still running. Remember, the attacker cannot use the ifconfig

command to detect the sniffer, as ifconfig has been altered to disguise promiscuous mode.

Furthermore, the sniffer process is usually hidden by the ps command. So, if the attacker is

concerned that the sniffer might have crashed, or worse yet, been discovered by a pesky

system administrator, the sniffchk program comes to the rescue.

LRK Installation Script

So, modern releases of LRK include more than two dozen programs and scripts designed to

transform a system to the attacker's specifications. However, compiling, installing, and applying

the fix program to each of the components of LRK by hand would likely require hours of work.

To avoid this drudgery and speed up the process, LRK includes an easy-to-use installation

script, in the form of a makefile. A makefile is merely a recipe for compiling and installing

software. The LRK makefile tells the system which ingredients are required for each program,

how to compile those ingredients to create the executables, where to put those executables in

the file system, and how to disguise them using the fix tool. Of course, for the makefile to work,

a compiler needs to be installed on the victim machine. Alternatively, the attacker could compile

the RootKit in advance on a similar system, and deploy the precompiled RootKit on a victim

machine. Depending on the processor speed and how heavily loaded the system is, the entire

installation process could take between 10 seconds and a few minutes. Still, given all the power

and complexity included in LRK, that's a short time to total domination of the machine. The

really sad part is that there's no real need for the attacker to understand how any of this stuff

works! The makefile does all of the installation work, so the attacker can just sit back and use

the RootKit itself.

The Universal RootKit (URK)

One ring to bring them all and in the darkness bind them.

Pagina 10 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

—Lord of the Rings, J.R.R. Tolkien, published in 1954

As we've seen, LRK replaces some of the guts of a Linux system to bend the machine to the

attacker's will, but Linux isn't the only target of RootKit-wielding bad guys. Other UNIX

variations succumb to user-mode RootKits all the time. In fact, a casual stroll over to the Packet

Storm Security Web site's RootKit folder (at

http://packetstormsecurity.nl/UNIX/penetration/rootkits/) reveals user-mode RootKits for

numerous different UNIX flavors, including BSD, OpenBSD, FreeBSD, Solaris, SunOS, HP-UX,

AIX, IRIX, and several other operating system types.

Now, imagine for a moment that you are a bad guy. You are very busy, hacking into dozens of

system around the planet each week, with a variety of different operating systems. It's a tough

life of hacking toil, but you get by somehow. Now, suppose you conquer a bunch of different

versions of UNIX systems in your exploits. Today, you grabbed a lot of Solaris boxes, yesterday

was FreeBSD day, and the day before you focused on HP-UX. You could stock a bunch of

different RootKits in your tool belt, one for each type of UNIX machine that you conquer.

However, it would require a lot of work to sort out all of your different RootKits, as well as

master all of the different commands and features of each different RootKit tool. Surely, unless

you were extremely careful, you'd occasionally make a mistake and try to install the wrong

RootKit on the wrong type of UNIX system, possibly disabling all remote access or even

crashing the box. If only there were some way to use a single RootKit on a bunch of different

UNIX variations, your life as an attacker would be far simpler.

Well, such general-purpose RootKits aren't in the category of "if only" any longer. A developer

named K2 released the Universal RootKit (abbreviated URK and usually pronounced "U–R–K"

not "urk") to meet just this need. URK functions on a variety of different UNIX variations,

including Linux, Solaris, BSDI, FreeBSD, IRIX, HP-UX, and OSF/1, all rolled up into one single

convenient RootKit package. In the words of the README file included with URK, K2's stated

goal for the tool was to create one RootKit that would "Run on most every UNIX you may

encounter."

Like other user-mode RootKits, URK includes a variety of replacement programs that implement

backdoors and hide the attacker, as well as various helper tools, listed in detail in Table 7.2.

Note that URK includes a subset of tools built into operating-system-specific RootKits such as

LRK. Even though it doesn't include every single knick-knack built into LRK, URK still packs a

strong punch, and its cross-platform capabilities make it especially useful for attackers.

Table 7.2. Components of the Universal RootKit (URK)

RootKit

Components
Function

login The familiar login program lets users log in to a system. The URK login

program includes a backdoor password that is located in the urk.conf file.

sshd This sshd backdoor is not included in all releases of URK. For those versions

that include it, the backdoor sshd supports remote encrypted backdoor

access by the attacker.

ping Normally the ping command is used to send an Internet Control Message

Protocol (ICMP) Echo Request packet to another system to see if it is alive.

The ping program built into URK, on the other hand, also includes a local

backdoor. By typing the ping command, followed by the backdoor password

locally on the system from a low-privileged account, an attacker will be

escalated to root privileges at the command prompt.

passwd This program, typically used to set a user's password, is another local

backdoor that works like the ping backdoor just described. By typing passwd

[backdoor_password], the attacker will get root privileges.

Pagina 11 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Most of the binary replacements in URK have a particularly interesting twist. To give URK

universal appeal, K2 didn't implement the binary replacements as brand new pieces of code, as

was done in most user-mode RootKits such as LRK. Instead, in URK, most of the binary

replacements are actually just wrapper programs that call a hidden version of the real program

and then give backdoor access or filter the real program's output to hide the attacker's

presence. Figure 7.5 illustrates the process for the familiar ps command, which is frequently

used to generate a list of processes running on a system.

Figure 7.5. The ps replacement program included in the Universal

RootKit is really just a wrapper and filter of the original ps.

Let's look at this wrapping and filtering process in more detail. First, URK moves the real ps

command to an obscure directory on the machine, such as /usr/man/man1/, where system

documentation in the form of "man" pages are typically stored. Then, the URK version of ps is

su The su command, which normally is used to alter a user's current login

identity, includes a backdoor that functions just like the ping and passwd

backdoors.

pidentd This process offers a remote command shell backdoor, listening on TCP port

113. If the attacker connects to this port, types the characters 23, 113, and

then the backdoor password, the system will respond with a remote root-level

command shell.

ps The ps program is used to show a list of running processes. This URK version

filters out any processes that the attacker wants to hide on the system.

top Normally, top shows a continuously updated list of running programs on the

machine. Like the URK version of ps, this program also filters out hidden

processes.

find The URK alters the find command, typically used to search for files, so that it

filters the attacker's files from its output.

ls The ls command included with URK filters an attacker's files from its output.

du This command, which shows the disk usage of files, has been modified to lie

about any space the attacker's files occupy.

netstat The URK version of netstat shows all listening TCP and UDP ports, except

those in use by the attacker.

sniffer The sniffer program built into URK gathers network traffic destined for

various services that use clear-text authentication, such as Telnet and FTP.

Pagina 12 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

written where the real ps was formerly located. Now, whenever a user or system administrator

runs ps, the URK version of the command will be invoked. This fake ps first runs the hidden,

real version of the ps command and grabs its output before it is displayed on the screen. The

fake ps then filters the output, removing any references to processes that the attacker wants to

be hidden. The URK versions of ps, top, find, du, and ls all use this filtering wrapper method.

In a similar fashion, the passwd, su, and ping backdoors are all designed as wrapper programs.

If the wrapper is invoked with the special backdoor password, the attacker is given a root-level

shell prompt. Otherwise, the wrapper program activates the normal command hidden away

somewhere inside the file system. So, instead of having to write brand new replacement

binaries for each of these programs on a whole bunch of UNIX flavors, a single set of general-

purpose filtering wrapper programs will suffice. That's a pretty efficient method of creating a

RootKit with universal applicability.

This standard complement of RootKit programs implemented as filtering wrappers is certainly

useful for the bad guys, but URK would be nothing without its installation program, the

makefile. When building and installing URK, the attacker activates the makefile with a single

argument: the flavor of UNIX that the resulting RootKit should be compiled for. Then, the

makefile contains the intelligence to grab the appropriate pieces of code to create a RootKit

tailored to that kind of UNIX. After compiling the appropriate code, the makefile inserts it into

the appropriate places on that type of target operating system, thereby RootKitting the

machine.

URK is initially configured using two files: urk.h and urk.conf. The first of these files is used

while the RootKit is compiled, identifying the location of the original versions of various wrapped

programs, as well as the password to be used for the backdoors. By default, the URK backdoor

password is set to h4x0r, a variation of the word hacker. The urk.conf file specifies where the

individual wrapper configuration files are stored. Each of these configuration files in turn

includes a list of process names, port numbers, and file names that will be hidden by URK. Of

course, URK modifies the system so that the urk.conf file is itself hidden. With all of these

capabilities and its ability to run on the vast majority of UNIX flavors, URK is certainly a

formidable user-mode RootKit tool.

File System Manipulation with RunEFS and the Defile r's Toolkit

So far, most of the tools we've seen in this chapter have focused on replacing critical system

binary executables so an attacker can gain backdoor access or hide on a system. However,

several tools go beyond diddling with binaries and instead focus on manipulating the underlying

file system structure of the victim machine. As you probably recall from our LRK discussion, the

fix tool lets an attacker tamper with the creation, modification, and last access time of

individual files. Although certainly useful for a bad guy, the fix tool was but a foretaste of even

more powerful tools that allow a bad guy to manipulate the file system. RunEFS and the

Defiler's Toolkit are two related tools written by someone called "the grugq" that accomplish

even more powerful attacks. Although they aren't RootKits by themselves, RunEFS and the

Defiler's Toolkit could certainly be added to user-mode RootKits (or even the kernel-mode

RootKits we'll discuss in Chapter 8) to make even more subtle, yet still devastating, attacks.

Computer Forensics Meets Antiforensics

RunEFS and the Defiler's Toolkit, available at www.phrack.org/show.php?p=59&a=6, attempt to

foil computer forensics techniques. Over the past several years, the relatively new field of

computer forensics has blossomed into a complete discipline and valuable resource in the

information security community. Computer forensics experts fight computer crime by gathering

and analyzing evidence, including log files, hard-drive images, and memory dumps from

compromised systems. In particular, hard-drive images are among the most useful forms of

evidence to the forensics specialist, as they contain a copy of the files and directories of the

victim machine. Hard-drive images are the closest thing we've got to a crime scene in many

cyberattacks. For this reason, most forensics specialists quickly snag a backup of a victim

Pagina 13 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

system early on in the incident-handling process, before any evidence is tainted.

Because bad guys don't want to get caught, they have developed a variety of techniques to

frustrate computer forensics analysis, especially as that analysis applies to the highly important

evidence on hard-drive images. These techniques are known collectively as antiforensics. In his

very detailed paper describing RunEFS and the Defiler's Toolkit, the grugq defines antiforensics

as "the removal or hiding of evidence in an attempt to mitigate the effectiveness of a forensics

investigation"[1].

A Brief Overview of the ext2 File System

To see how RunEFS and the Defiler's Toolkit manipulate evidence, we need to explore the

structure of file systems. Of course, the file system itself is merely the arrangement used by the

operating system to store files and organize them into directories on the system's hard drive.

Without a file system, your hard drive is just one vast ocean of undecipherable and completely

unusable bits. The file system tames this ocean of bits, applying a coherent structure so we can

navigate the system and access files. To a normal user, the file system looks like a bunch of

files allocated in various directories. However, the file system itself works hard to mask its own

underlying complexity and the physical details of the hard drive. Numerous different file system

types are in use today, including the ufs file system used by several flavors of UNIX, the NTFS

file system used by Windows NT/2000/XP/2003, and the ext2 file system used by many

versions of Linux. RunEFS and the Defiler's Toolkit attack the ext2 file system. Because of that,

we'll focus on the details of ext2, although similar high-level concepts and related attacks apply

across all of these file system types.

One of the most fundamental components of the ext2 file system is the data block, where file

content is written. During formatting, the hard drive is carved up into a series of these blocks,

with a typical ext2 block being 4,096 bytes in length (although other sizes are supported). A file

is nothing more than a collection of blocks that are related to each other. The blocks making up

a single file are likely not even contiguous on the hard drive.

"But," you might ask, "how does the file system relate a bunch of noncontiguous blocks

together into a file?" This grouping of blocks is accomplished through the magic of the inode.

Each and every file on the file system has one inode, which is a data structure storing critical

information about that file, including a list of blocks that hold the associated file's contents.

Each inode has a unique number, called the inode number, used to identify that inode. The

relationship of an inode to a series of blocks making up a single file is shown in Figure 7.6.

Figure 7.6. The relationship between a file's inode and the blocks that
store that file's data.

Pagina 14 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

An inode contains a bunch of pointers to the blocks that make up a file. Some of these blocks

are pointed to directly by the inode and are therefore referred to as direct blocks. Ext2 supports

up to 12 direct blocks. For larger files that have more blocks, there aren't enough slots in the

inode to point directly to all of the blocks, so an extra level of indirection is used. With indirect

blocks, the inode itself points to another block that holds an array that points to other blocks

holding the file's contents. If the file is still too large to be represented with direct and indirect

blocks, yet another level of indirection supports double indirect blocks. And, yes, for gargantuan

files, ext2 even supports trebly indirect blocks. Trebly is just a fancy way of saying triply, by the

way.

In addition to a list of blocks that make up the file, the inode also contains information about

the file's permissions, the file's owner, and the size of the file. The inode also holds the access,

creation, and modification times associated with the file (that's the a_time, c_time, and m_time

that we discussed earlier in this chapter). To get an idea of how your hard drive is organized,

think of an inode like a set of instructions in a scavenger hunt. The scavenger hunt instructions

tell all the players where to find various goofy objects required to win the game. Similarly, a

file's inode tells you where to pick up all of the different blocks on the file system so you can

reassemble that file when someone wants to use it.

The blocks making up a single file are scattered all around your hard drive, but the inodes

themselves are grouped together on your file system. That way, the operating system can

easily find the inodes and use them to figure out how to get at the files. To spell out how many

inodes are available on the system, ext2 uses something called a super block, which is a master

data structure that defines the overall shape of the file system. In the olden days of UNIX file

systems, there was a single super block at the beginning of the hard drive that laid out the

inode structure. The super block was followed by all of the inodes, which were in turn followed

by the blocks themselves. However, there was a fundamental flaw in this overall strategy. If the

super block got corrupted, the entire hard drive was hosed, as the operating system couldn't

even figure out how the inodes themselves were constructed without an intact super block. To

deal with this problem, in modern UNIX file systems, copies of the super block are located in

several places on the hard drive, as shown in Figure 7.7. This overall structure containing the

super block, inodes, and data blocks is repeated at several locations on the hard drive, with

each iteration carving up that piece of the drive.

Figure 7.7. The organizing scheme of the ext2 file system brings

together the super block, inode and block bitmaps, the inodes

themselves, and data blocks.

Pagina 15 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

The attentive reader will also note that Figure 7.7 contains two additional elements we haven't

yet discussed. After the super block, ext2 contains a bitmap of all inodes. This bitmap specifies

which inodes are in use and which are free to be used for new files. This inode bitmap is not a

bitmap in the sense that it contains some graphical image. It just has a bunch of bits that can

either be on or off, depending on whether an inode is in use or not. After the inode bitmap, the

system stores a block bitmap that shows which blocks are in use and which are free. Using

these two bitmaps, the file system can get the status of each and every inode and data block in

that file system to determine if it is allocated. When a new file is created, the system consults

these bitmaps to find an unused inode for the file as well as unused blocks to store the file's

contents. These bitmaps are then updated to reflect the presence of the brand new file.

There's one special inode we need to zoom in on. The first real inode on the system (and I'm

not referring to the super block) contains a list of bad blocks. These bad blocks haven't been

naughty; they're simply unusable. When you conduct a full format of your hard drive, the

formatting program will discover a few blocks on the hard drive that cannot properly store data.

These so-called bad blocks might be the result of a pimple or scratch on the physical hard-drive

media, some bad magnetic resonance, or another flaw. However, just because there are a few

bad blocks, we don't want to toss the whole drive in the garbage. Indeed, most drives have a

handful of bad blocks scattered here and there. The formatting program generates a list of bad

blocks and writes that list in the first inode. By consulting this bad blocks inode when storing

new data in unused blocks, the file system can make sure it only uses good blocks. The file

system then avoids bad blocks like the plague.

We've now seen how files themselves are constructed, but we've left off a crucial element. Note

that we've said nothing yet about the file's name or the overall directory structure. Where are

these items located? Are they in the inode? Nope. The underlying file system structure deals

solely in inodes and blocks, and doesn't assign names or organize the directory hierarchy.

Instead, the directory is implemented pretty much like a standard file itself in terms of an inode

containing pointers to data blocks. In the case of the directory, however, the data blocks

contain a data structure with the names of all files in the directory as well as their relationship

to each other in the directory hierarchy. The directory contains a set of entries, one for each

file. A directory entry holds the file's name and the inode number the file corresponds to, as

well as a record length, which describes how long that directory entry is.

Messing with Ext2 Using RunEFS

Now that we've completed our whirlwind tour of the ext2 file system, let's see how RunEFS and

the Defiler's Toolkit mess with all of this beauty to foil forensics analysis. We'll first address the

RunEFS tool, which allows an attacker to hide data such as a backdoor program or sniffed

passwords on the file system. RunEFS takes advantage of the fact that many forensics

investigators and the tools they use don't look inside of bad blocks. These investigators and the

authors of these tools make the unfortunate (but seemingly reasonable) assumption that no

real data could be stored in bad blocks. If the blocks are referred to in the bad blocks inode,

they can't possibly have the attacker's data stored in them, right? Wrong!

RunEFS carves out a portion of the hard drive and labels the associated blocks as bad by writing

their block numbers into the bad blocks inode. RunEFS does all of this on the fly, without

reformatting the hard drive or corrupting any data. An attacker can use RunEFS to label a set of

blocks as bad on your system, put data in those blocks, and take data out of the fake bad

blocks. An attacker could store any type of digital information in these fake bad blocks,

Pagina 16 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

including computer attack programs, backdoors, password lists, stolen information, supersecret

macaroni and cheese recipes, pirated software, conspiracy theories, or pornography. To actually

run a program using the current version of RunEFS, however, the attacker would have to copy

it from bad blocks into good blocks before executing it. However, while running, the program is

copied into memory. The attacker can then delete the program file from the good blocks on the

hard drive.

As an example, suppose you have a 40 GB hard drive. I hack into your system and upload a

backdoor listener program, a sniffer, and various other tools. I don't want you to find my

dastardly tools, so I'll use RunEFS to carve out a 100 MB area of the hard drive, and label all of

those blocks as bad. They're really good blocks, where I can write data using the RunEFS tool.

However, I'll modify the bad blocks inode to lie and say that these blocks are bad. When these

blocks are labeled bad, though, your hard drive will suddenly look slightly smaller: 40 GB less

100 MB is 39.9 GB of good space left for you. Yet, few people would notice such a small change

in the size of their hard drive. This operation is shown in Figure 7.8.

Figure 7.8. Using RunEFS to label good blocks as bad, making the drive
appear somewhat smaller.

If, per chance, you somehow detected my sniffer program running or found the port used by

my backdoor, you'd likely make a backup of the victim machine for forensics analysis. Unless

you snag a copy of all of the data blocks for analysis, including the bad blocks, you won't see all

of my dastardly tools. You'll only see the elements I don't stash away in blocks labeled as bad.

Even if you do get a complete bit-by-bit copy of the entire drive, including bad blocks, some

forensics analysis tools have a bug that prevents them from looking at bad blocks. In particular,

the venerable yet still widely used tool, The Coroner's Toolkit (TCT) by Wietse Venema and Dan

Farmer, does not analyze any blocks referred to in the bad blocks inode. Similarly, tools derived

from TCT, including older versions of The @Stake Sleuth Kit (TASK) by Brian Carrier, don't look

at the bad blocks inode or any blocks referenced by it. Carrier fixed this issue in newer releases

of TASK, which is now officially called the Sleuth Kit. The Sleuth Kit is a wonderful forensics

analysis tool for delving deep into a hard drive's structure, and is available for free at

www.atstake.com. However, if you are using TCT or older versions of TASK, I'd still fly under

the radar screen of your forensics analyst by using RunEFS.

Messing with Ext2 Using the Defiler's Toolkit

Whereas RunEFS carves out a hidden area on the hard drive for the attacker, the Defiler's

Toolkit is focused on securely deleting forensically useful data from the file system. First off,

check out that name: the Defiler's Toolkit. It reminds you of The Coroner's Toolkit, the forensics

tool, doesn't it? Here we see an antiforensics tool specifically designed to foil a forensics tool. To

see how, note that whenever you create a file on an ext2 file system, information about that file

is stored in three places: the data blocks where the file contents are written, the inode that

Pagina 17 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

points to those blocks associated with the file, and a directory entry describing the file's name.

Suppose you delete the file. When you do a run-of-the-mill file deletion using the Linux rm

command, the blocks where the file is written are freed up for future use, but not cleared.

Similarly, the inode and directory entry are freed up, but they still contain the original data.

Under normal circumstances, this data will only be overwritten if the data blocks, inode, and

location of the directory entry are allocated to another file. Before another file taking up these

resources is created, all of this data is still available on the hard drive. During an investigation,

a forensics examiner could use an undelete program to recover such a deleted file. Numerous

undelete programs are available, on both a free and commercial basis, such as the commercial

R-Undelete tool from R-Tools Technology, Inc. Available at http://r-undelete.com, R-Undelete

supports both Linux and Windows file systems. Forensics tools use similar techniques to recover

deleted evidence from a hard drive.

An attacker can create various files on the system, and might later need to remove those files

without leaving any tracks for a forensics analyst. These files could contain, for example, the

installation programs for a RootKit that can be safely discarded once the RootKit is in place.

Even if the attacker's file is overwritten once or twice, a forensics analyst could use fancy

hardware to read the previous bits based on residual magnetic resonance of these bits [2]. So,

instead of using the rm command, which leaves data around for the forensics investigator, the

attacker often wipes the contents of the file using a tool that overwrites all of the data blocks,

thus blanking out their contents. For example, Linux includes the shred command to wipe out

the contents of a file. By default, shred overwrites the file's blocks 25 times using a pattern of

bits designed to make sure every last bit of evidence in the data blocks is destroyed. With
shred, the bits cannot be recovered even with specialized hardware that can view earlier recent

values of a given bit on the drive even though it has been overwritten.

However, note that shred and related tools are focused solely on the data blocks holding the

file contents. A forensics investigator could still analyze the inode and directory entries to learn

about the attacker's activities. Sure, the investigator won't be able to get a copy of the

dastardly tools, but their names and sizes could certainly be useful. Also, from a forensics

perspective, the creation, modification, and access times are hugely important in understanding

the attacker's activities and building a court case. All of this data is left intact by the shred

command and most other file wiping tools. TCT, TASK, and other forensics tools look for just

this metadata during a forensics analysis.

As an antiforensics measure, the Defiler's Toolkit destroys inode and directory entry information

associated with deleted files to make sure that forensics tools cannot retrieve it. To accomplish

this goal, the Defiler's Toolkit includes two programs: Necrofile and Klismafile. Necrofile scrubs

inodes clean, removing any information about the blocks that were assigned to the inode and

file. All inode information is cleared, including its owner, permissions, and any time information.

The attacker activates Necrofile, specifying the criteria to use in selecting inodes to clean, such

as inode number, user ID, or times referred to in the inode.

Klismafile focuses on the directory structure, overwriting the directory entries associated with

deleted files. This tool even supports using regular expressions to formulate very flexible

searches for the name of a file or directory to be cleaned. However, Klismafile cannot

completely remove every scrap of evidence from the directory. You see, in the ext2 file system,

directory entries are written one right after another, and they have variable length, as

illustrated in Figure 7.9. These directory entries are variable in length because file names have

variable size, up to 255 bytes. Therefore, when Klismafile cleans out a directory entry, there is

a big blank gap left in the directory structure. Klismafile tries to cover up this gap by making

the preceding directory entry's record length larger. A superskilled forensics analyst combing

through the directory structure in mind-numbing detail might notice this little discrepancy.

Some modern forensics tools can automatically highlight the unexpected directory entry size

difference. The directory entry will be too big for the name loaded into the entry, kind of like an

overstretched sock that's hanging on a skinny foot. However, the only information the forensics

analyst can glean will be the size of the deleted file's name. It's actual name, contents, inode,

Pagina 18 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

and anything else will be long gone, deleted by the Defiler's Toolkit. Klismafile could be

modified to rewrite the directory structure entirely, in a sense defragmenting it. However, this

rewrite would take some time, and would involve significant disk usage as the directory

structure is rebuilt to resize the removed entries.

Figure 7.9. Removing directory entries using Klismafile leaves larger
record lengths in remaining directory entries.

UNIX RootKit Defenses

We have learned of evil, though not as the Evil One wished us to learn.

—C.S. Lewis, Perelandra, Book Two of his Space Trilogy, 1943

As we've seen, user-mode RootKits on UNIX are not something to be trifled with. To stop their

use on your systems, you need to plan your defenses carefully. As we analyze the various

defensive strategies available for dealing with these tools, keep the following analogy in mind:

In some sci-fi television programs, a standard plot device involves evil aliens kidnapping the

captain of a starship. After nabbing the real captain and locking him in a dungeon, the aliens

replace him with a counterfeit captain, just because they're evil. This fake captain takes control

of the starship, with the real crew unaware of the malicious switch. At some later time, the real

captain escapes his captivity and confronts his counterfeit face to face. Inevitably, some crew

member on the ship is required to choose which is the real captain and which is the counterfeit.

Of course, this crew member must carefully decide and quickly vaporize the imposter with a ray

gun. The correct choice will save the captain, the ship, and all of humanity from the grip of the

evil aliens. The wrong choice will lead to certain doom.

The defenses from this classic sci-fi dilemma map quite well to the problems we face with

defending against user-mode RootKits. How can you thwart evil attackers who play switching

games with your critical operating system programs? Instead of swapping the captain of a

starship, our evil attackers swap operating system components with user-mode RootKit

counterfeits. The defenses against such attacks fall into three categories: prevention, detection,

Pagina 19 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

and response.

User-Mode RootKit Prevention on UNIX

To prevent attackers from installing user-mode RootKits on your systems, you must carefully

harden your systems and apply patches. Remember, to install a RootKit, the attacker must first

conquer root-level permissions on the machine, via guessing passwords, exploiting a weak

system configuration, or finding an unpatched flaw on the machine. If attackers cannot break

into your system with root-level permissions, they cannot use a RootKit on the machine. In our

sci-fi captain-switching analogy, this step is the equivalent of preventing the attackers from

kidnapping the captain in the first place.

To harden your system, you should shut off and remove unnecessary services and functionality

on the machine. Look at all available network services. Which do you really require for the

system to perform its required business purpose? After shutting down all unneeded network

services, look at various local packages installed on the machine. Are they all required? Any

local program with a security flaw could offer a malicious user the ability to escalate

permissions to root level. To help you walk through this process, consider using one of the large

varieties of solid system hardening programs or guides available for UNIX operating systems.

For the Linux, HP-UX, and Macintosh OS X flavors of UNIX, you should consider Bastille, written

by Jay Beale. This wonderful free tool, available from www.bastille-linux.org, is an automated

script that walks you through system hardening. Although it was originally crafted for use on

Linux, Bastille now has solid support on HP-UX and Macintosh OS X as well as Linux. According

to the eminent Jay Beale, the primary goal of Bastille is to "provide the most secure, yet usable,

system possible." Although a daunting task, Bastille delivers amazingly well on this steep

objective.

As Bastille runs, it prompts the system administrator, asking whether it should complete each

hardening step. This prompting, shown in Figure 7.10, serves two very useful purposes. First, it

allows an administrator to custom-fit the functionality of the hardened box for the particular

environment in which it will live, just by answering a series of questions in a nice GUI. Second,

by running Bastille, an administrator can learn the various steps needed to secure a box. The

screen in Figure 7.10 illustrates this educational component, as it describes the change Bastille

will make to the Linux kernel configuration to prevent some types of buffer overflow

vulnerabilities. This valuable knowledge comes in handy time and time again, as the

administrator uses Bastille on other machines and even on machines without Bastille support. If

you are system administrator for Linux, HP-UX, or Macintosh OS X, you should try Bastille. It'll

make your life easier.

Figure 7.10. Bastille hardens systems, while helping educate system

administrators.

Pagina 20 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Besides Bastille, the SANS Institute offers various Step-by-Step Guides for hardening individual

operating systems, including Linux and Solaris, available for a reasonable fee at

http://store.sans.org/store_item.php?item=83 and http://store.sans.org/store_item.php?

item=21, respectively. Furthermore, a wonderful hardening guide and checklist for Solaris is

available from the System Administrator's Guild (SAGE) at

http://sageweb.sage.org/resources/online/solaris/index.html.

In addition to hardening your machines, you need to keep them patched. To keep your system

patched, implement a comprehensive patching process, based on the tips we discussed in

Chapter 3. The timely application of patches can be tedious hard work, but it is essential for

maintaining a secure system and keeping the bad guys from installing user-mode RootKits.

User-Mode RootKit Detection on UNIX

Although prevention goes a long way in stopping user-mode RootKits, we must go further to

minimize the chance of falling victim to these foul tools. If an attacker installs a user-mode

RootKit on your system, you need to be able to quickly detect the attack. Back to our

counterfeit starship captain analogy, your crew should be able to identify the imposter quickly,

before he steers your spaceship into dangerous territory. There are two types of tools that can

detect user-mode RootKits: file integrity checkers and RootKit-specific identification tools.

We've run across file integrity checking tools before, specifically in Chapters 2 and 6. We gave a

high-level overview of such tools then, but we need to get into more detail now, simply because

these tools really shine in defending against user-mode RootKits.

As you might recall, when they are installed, file integrity checking tools create a database of

cryptographic hashes of critical system files, including configuration files and sensitive binaries.

These hashes act as fingerprints for the known good files on the machine, and are usually

stored on a write-protected medium such as a write-once CD-ROM or write-protected floppy

disk. These tools rely on cryptographically strong one-way hashing or digital signature

algorithms, such as MD5 or SHA-1. Seriously smart cryptographers designed these algorithms

so that an attacker couldn't determine a counterfeit that has the same resulting hash as a

legitimate program. Devising a counterfeit with a hash that matches the original would require

gobs of processing power over eons of time, ranging from decades to the widely accepted age

of the universe, depending on the particulars of the algorithm in use. Therefore, although

RootKit tools like fix can pad a replacement program to match the noncryptographic checksum,

attackers simply cannot make the replacement's cryptographically strong hash match the hash

of the original program. Using these tools, we get cryptographically strong file protection. Back

to our starship captain analogy, a file integrity checker acts like a DNA analysis tool, looking for

Pagina 21 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

discrepancies between the real and fake captains at the microscopic level.

After creating an initial database of hashes of critical system files, a system administrator

schedules the file integrity checking tool to run on a periodic basis, such as once per day or

even once per hour on sensitive systems. While the file integrity checking tool runs, it

recalculates the hash of each critical file and compares the hash to the database of known good

hashes. If there is a discrepancy between the hashes, someone altered the file. It is up to the

system administrator to determine whether the file was altered by routine system administrator

tasks or by an evil attacker who has compromised the system. This reconciliation step could be

a significant amount of work! Many patches alter the system significantly, causing a file

integrity checking program to fire off all kinds of warning messages.

On my own systems, I run a file integrity checker once each day, as well as just before I apply

a system patch. By running the tool just before I install the patch, I can make sure my system

is in a known good state prior to the patch. After reconciling any prepatch changes that I

discover, I install the patch. Quickly after installing the patch, I run the file integrity checking

tool again, instructing it to re-create its database of file hashes. That way, not only will I know

my system was in good shape before the patch, but I'll also have a fresh postpatch reference of

hashes to check it against in the future. I've illustrated this process in Figure 7.11. While I

install patches and reconcile changes with a file integrity checker, this process keeps me from

ripping the hair out of my head—an increasingly important need as I grow older.

Figure 7.11. Using file integrity checking tools before and after patch
installation.

Each file integrity checking tool comes with a list of critical system files that are often altered by

attackers. These lists vary slightly, but they all include the standard complement of programs

that are frequently altered by attackers, including sshd, login, netstat, ps, ls, and all of the

other RootKit replacements we've discussed throughout this chapter.

File integrity checking tools have been available for many years. Tripwire, originally by Gene

Kim and Gene Spafford, was the first very powerful tool in this category. Tripwire remains one

of the strongest and most widely used solutions in this space. It's available for free at

www.tripwire.org, or on a commercial basis at www.tripwire.com. You've got to like those easy-

to-remember URLs. The commercial version includes vendor support and enhancements for

centrally managing Tripwire across an enterprise. Tripwire has wide platform support, running

on the vast majority of UNIX operating system flavors (including Linux, Solaris, HP-UX, IRIX,

AIX, and Tru64). There's also a Windows version, which we'll discuss in more detail later in the

chapter.

Pagina 22 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

Tripwire isn't the only tool in this field. The Advanced Intrusion Detection Engine (AIDE) is a

free, open-source alternative to Tripwire, written by Rahmi Lehti and Pablo Virolainen. Available

at www.cs.tut.fi/~rammer/aide.html, AIDE supports Linux, Solaris, various BSD incarnations,

Unixware, AIX, and Tru64. Other tools in this genre include Osiris (at http://osiris.shmoo.com/)

and Samhain (at http://la-samhna.de/samhain/).

Although some form of file integrity checking tool is a must for any security-minded system

administrator, other tools complement their capabilities by specifically identifying RootKits. The

very aptly named chkrootkit is one of the most popular tools in this category, available at no

charge at www.chkrootkit.org. Written by Nelson Murilo and Klaus Steding-Jessen, chkrootkit is

well versed in the specific changes various RootKits make to a target system, and can look for

those changes to detect more than 45 different RootKit strains. Using our starship captain

swapping analogy, chkrootkit acts like crew members who can ask the captain very carefully

selected questions to differentiate between the real captain and the counterfeit. For example,

the crew could test the captain by asking him about some very esoteric event in his past, such

as the name of an exam the captain aced while at Starfleet Academy. Alternatively, they could

ask the captain about some ethical dilemma, knowing that the real captain would respond

differently from the imposter. If the given "captain" cannot answer the questions properly, the

crew will know that he's the counterfeit and vaporize him.

Chkrootkit runs locally on Linux, Solaris, FreeBSD, OpenBSD, NetBSD, HP-UX, and Tru64

operating systems and asks questions of the local software in an attempt to determine if a

RootKit is installed. So, what kind of questions does chkrootkit ask? It asks several dozen

questions based on the most widely used RootKits available today. Each question asked of the

operating system is in the form of a specific test automatically run by chkrootkit. For example,

chkrootkit looks for the names of various configuration files used by many RootKits, such as

the /dev/ptyp and other related files created by LRK. Furthermore, chkrootkit checks for signs

of deleted entries from the lastlog and wtmp files, an indication that the wted or Zap2 tools

might have been used. It also attempts to see if the network interface is in promiscuous mode,

a likely sign of a sniffer (although, sadly, this sniffer check isn't reliable on most recent Linux

distributions using Linux kernel 2.4). To help detect backdoor shell listeners associated with

various RootKits, chkrootkit looks at the various TCP and UDP ports in use on the machine to

see if any match the well-known ports associated with popular RootKits. It even looks for small

snippets of code from some of the more popular RootKits in use today, including LRK.

Although all of those individual tests are quite useful, chkrootkit's best feature is probably its

ability to analyze a select set of individual binary programs to determine if they have been

modified. The tool looks for anomalies in all of the following commands:

amd basename biff chfn chsh cron date du dirname echo

egrep env find fingerd gpm grep hdparm su ifconfig inetd

inetdconf init identd killall ldsopreload login ls lsof

mail mingetty netstat named passwd pidof pop2 pop3 ps

pstree rpcinfo rlogind rshd slogin sendmail sshd syslogd

tar tcpd tcpdump top telnetd timed traceroute w write

Wow! That's quite a list, and covers nearly everything I've ever seen a user-mode RootKit try to

replace. It's important to note that a user running chkrootkit doesn't have to manually perform

each of these checks. Every last one of them is built into the chkrootkit program. When run, the

tool conducts all of these complex tests and spits out a single answer: INFECTED or not

infected. And yes, if you have a RootKit installed, the tool actually displays the infected

message in all capitals, which seems quite fitting. If the system has indeed been infected,

chkrootkit will also specify which test detected the anomaly, so you can determine which binary

was replaced.

Pagina 23 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

There is a small chance of a false positive from chkrootkit, especially in its promiscuous mode

check, which is unreliable on Linux systems. Still, besides the promiscuous check, I very seldom

get a false positive when using the tool. False negatives, where the tool doesn't detect the real

presence of a RootKit on an infected machine, are also conceivable with chkrootkit. If the

attacker creates a custom RootKit that hides the attacker's presence in novel ways, chkrootkit

might not be able to detect it. Again, for most uses, chkrootkit performs admirably in

minimizing false positives and negatives.

One beautiful aspect of chkrootkit is that its anomaly checks do not require establishing a

database of hashes in advance. Unlike the file integrity checking tools we discussed earlier,

chkrootkit doesn't need such a database. Its tests are not based on comparing hashes; all of its

checks are built into the logic of the tool itself. Please don't misunderstand my point here: I'm

not saying that chkrootkit should replace your file integrity checking tool—not by any means!

Chkrootkit is a perfect complement to a file integrity checking tool. By using both types of tools

for RootKit detection, you'll have a much better shot at discovering an attacker.

User-Mode RootKit Response on UNIX

Now suppose you discover that an attacker has installed a user-mode RootKit on your system.

How should you respond to this fact? Uttering a few choice curse words under your breath is a

reasonable and popular way to start. Beyond that, to investigate a system that potentially has a

RootKit installed, you can't really rely on the software on the system. You shouldn't just log in

to the machine and start running the existing command programs on the box for your

investigation. The RootKit likely modified these programs so that they lie to you.

To address this situation, I've seen some system administrators create copies of their critical

binaries with a different name that an attacker wouldn't know. For example, an administrator

could name a copy of the ls command new_ls or the ps command admin_ps, and then use

those programs instead of the normal ones installed on a system if a RootKit is suspected. This

technique might help a small bit, but I'm not crazy about it as a general-purpose solution. An

attacker could hunt down and alter new_ls or admin_ps without too much difficulty, especially if

they are loaded in the administrator's path. Because of this concern, I don't use this technique

on my own systems.

For a better approach, if you want more trustworthy results, you'll have to bring your own

programs to the system to conduct your investigation, instead of relying on commands loaded

on the machine. If you handle computer investigations, you should create a bootable CD-ROM

that includes all of the binary executables you require for analyzing a system, such as ls, lsof,

ps, du, and netstat. When investigating a potential RootKit incident, you can run these tools

from your CD-ROM. Please make sure these command programs on the CD are statically linked.

That is, compile them (or download precompiled versions) so that they do not rely on any

libraries on the system's hard drive. Statically linked executables are self-contained binary

programs that don't need any libraries to run. The binary executable makes calls directly into

the operating system kernel to investigate what's going on. If a bad guy alters one of the

library files on your system, the statically linked binary will bypass this alteration as you look

through your system. The answers will be more trustworthy than the results you'd get from the

programs already loaded on the machine.

There are several free CD-ROM images with collections of trusted, statically linked binary

programs available on the Internet. I'm quite fond of Bill Stearns' static tools for Linux at

www.stearns.org/staticiso. My favorites, though, are FIRE (created by William Salusky and

available at http://fire.dmzs.com) and Knoppix (developed by Klaus Knopper and available at

www.knoppix.org). You can download each of these bootable Linux distributions and burn them

onto a CD-ROM to carry with you on your investigations. These packages are full of useful

investigation tools, including standard UNIX command programs as well as specific forensics

tools.

After you investigate the RootKit-infected system using a tool like FIRE or Knoppix, you'll need

Pagina 24 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

to rebuild your system. Your best bet is to reinstall the operating system itself, reload all critical

applications, and apply all appropriate patches. Sorry, but you cannot just replace the single

malicious program detected by the file system integrity checker or chkrootkit. If attackers

modified one piece of your operating system, they likely modified many other components as

well, including the applications installed on the machine. You could reinstall the operating

system from the original media, or use a trusted backup. However, you must make sure your

backups really are trustworthy. Rebuilding your system from a backup that includes a RootKit

will get you nowhere. Either use the original installation media and patches, or run an integrity

check against your backups before using them. On a starship, if evil aliens replace the captain

with a malicious interloper, who's to say that they haven't also planted a substitute for the first

mate, the chief science officer, or the communications expert? If the captain has been

compromised, the whole crew is suspect and should be replaced with fresh, trusted personnel.

We should do the same thing in a RootKit attack by restoring our operating system from the

original media or a trusted backup.

Once the system is restored, monitor it carefully using network- and host-based intrusion

detection tools. Bad guys frequently return to the scene of the crime, and try to log in to the

system again. If you are monitoring the system looking for their return, you will be much more

likely to protect the systems and possibly even catch the attackers.

Also, in defending against user-mode RootKits, don't forget about how RunEFS and the Defiler's

Toolkit manipulate the underlying file system, especially their tricks for falsely labeling blocks as

bad. If you conduct forensics investigations, you need to be aware of these attack tools. Also,

make sure you utilize forensics analysis tools that can analyze the bad blocks inode as well as

blocks that are labeled as bad. Recent releases of the free Sleuth Kit tool, as well as most

commercial forensics tools, have this ability. Finally, when you create a system backup for

forensics analysis, make sure to get a bit-by-bit copy of the entire file system, including blocks

that are labeled as bad.

 < Day Day Up >

Pagina 25 di 25UNIX User-Mode RootKits

07/12/2008mk:@MSITStore:E:__BOOKZ_-_Malware%20-%20Fighting%20Malicious%20Co...

