
 1

The Law Enforcement and

Forensic Examiner
Introduction to Linux

A Beginner's Guide

Barry J. Grundy
Special Agent

NASA Office of Inspector General
Computer Crimes Division

Code 190 Greenbelt Rd.
Greenbelt, MD 20771

(301) 286-3358
bgrundy@imx.hq.nasa.gov

VER 2.0.5

January 2004

 2

LEGALITIES .. 3
FOREWORD... 4
A WORD ABOUT THE “GNU” IN GNU/LINUX ... 5
WHY LEARN LINUX? .. 5

I. INSTALLATION... 6
DISTRIBUTIONS .. 7
INSTALLATION METHODS:.. 9
INSTALLATION OVERVIEW ... 10
THE NEW 2.6 LINUX KERNEL ... 12

II. LINUX DISKS, PARTITIONS AND THE FILESYSTEM.. 13
DISKS ... 13
PARTITIONS .. 13
USING MODULES... 15
MODULES ON NEWER SYSTEMS.. 16
THE FILESYSTEM.. 17

III. THE LINUX BOOT SEQUENCE (SIMPLIFIED)... 19
BOOTING THE KERNEL .. 19
INITIALIZATION .. 20
RUNLEVEL.. 21
GLOBAL STARTUP SCRIPTS .. 22
BASH .. 22

IV. DOS / LINUX EQUIVALENT COMMANDS ... 24
"DOS COMMAND" = LINUX EQUIVALENT... 24
ADDITIONAL USEFUL COMMANDS .. 27
FILE PERMISSIONS .. 29
METACHARACTERS .. 31
COMMAND HINTS... 32
PIPES AND REDIRECTION .. 32
THE SUPERUSER... 33

V. EDITING WITH VI ... 35
USING VI .. 35
VI COMMAND SUMMARY .. 36

VI. MOUNTING FILE SYSTEMS ON DISKS .. 37
THE MOUNT COMMAND ... 37
THE FILE SYSTEM TABLE (/ETC/FSTAB) ... 39

VII. LINUX AND FORENSICS.. 41
INCLUDED FORENSIC TOOLS .. 41
ANALYSIS ORGANIZATION.. 42
DETERMINING THE STRUCTURE OF THE DISK .. 43
CREATING A FORENSIC IMAGE OF THE SUSPECT DISK.. 44
MOUNTING A RESTORED IMAGE.. 45
FILE HASH.. 46
THE ANALYSIS .. 47
MAKING A LIST OF ALL FILES.. 48
MAKING A LIST OF FILE TYPES.. 49
VIEWING FILES ... 49
SEARCHING UNALLOCATED AND SLACK SPACE FOR TEXT... 51

 3

VIII. COMMON FORENSIC ISSUES... 54
HANDLING LARGE DISKS .. 54
PREPARING A DISK FOR THE SUSPECT IMAGE .. 56

IX. ADVANCED (BEGINNER) FORENSICS .. 58
THE COMMAND LINE ON STEROIDS.. 58
FUN WITH DD... 64
SPLITTING FILES AND IMAGES... 64
DATA CARVING WITH DD ... 66
CARVING PARTITIONS WITH DD .. 69
THE NASA ENHANCED LOOPBACK DRIVER .. 74
DETERMINING THE SUBJECT DISK FILESYSTEM STRUCTURE.. 76

X. ADVANCED FORENSIC TOOLS ... 80
SLEUTHKIT ... 81
AUTOPSY.. 88
SMART FOR LINUX ... 100
OTHER ADVANCED LINUX FORENSIC TOOLS ... 104

XI. BOOTABLE LINUX DISTRIBUTIONS... 105
TOMSRTBT - BOOT FROM A FLOPPY... 105
KNOPPIX - FULL LINUX WITHOUT THE INSTALL.. 105
PENGUIN SLEUTH - KNOPPIX WITH A FORENSIC FLAVOR .. 105
WHITE GLOVE LINUX - DR. FRED COHEN .. 106
SMART FOR LINUX - IT’S BOOTABLE! ... 106
CONCLUSION .. 107

XI. LINUX SUPPORT .. 108
WEB SITES TO CHECK FOR SUPPORT:... 108

Legalities

All trademarks are the property of their respective owners.

© 1998-2004 Barry J. Grundy (bgrundy@imx.hq.nasa.gov): This document
may be redistributed, in its entirety, including the whole of this copyright
notice, without additional consent if the redistributor receives no
remuneration and if the redistributor uses these materials to assist and/or
train members of Law Enforcement or Security / Incident Response
professionals. Otherwise, these materials may not be redistributed without
the express written consent of Barry J. Grundy.

 4

Foreword

 This purpose of this document is to provide an introduction to the
GNU/Linux (Linux) operating system as a forensic tool for computer crime
investigators. There are better books written on the subject of Linux (by
better qualified professionals), but my hope here is to provide a single
document that allows a user to sit at the shell prompt (command prompt) for
the first time and not be overwhelmed by a 700-page book.

Tools available to investigators for forensic analysis are presented
with practical exercises. This is by no means meant to be the definitive
“how-to” on forensic methods using Linux. Rather, it is a starting point
for those who are interested in pursuing the self-education needed to become
proficient in the use of Linux as an investigative tool. Not all of the
commands offered here will work in all situations, but by describing the
basic commands available to an investigator I hope to “start the ball rolling”.
I will present the commands, the reader needs to follow-up on the more
advanced options and uses. Knowing how these commands work is every
bit as important as knowing what to type at the prompt. If you are even an
intermediate Linux user, then much of what is contained in these pages will
be review. Still, I hope you find some of it useful.

Over the past couple of years I have repeatedly heard from colleagues

that have tried Linux by installing it, and then proceeded to sit back and
wonder “what next?” You have a copy of this introduction. Now download
the exercises and drive on.

As always, I am open to suggestions and critique. My contact

information is on the front page. If you have ideas, questions, or comments,
please don’t hesitate to call or e-mail me. Any feedback is welcome.

 This document is often updated. Check for newer versions (numbered
on the front page) on the NASA Headquarters FTP site or in the “resources”
section of the Ohio HTCIA website:

 ftp://ftp.hq.nasa.gov/pub/ig/ccd/linuxintro/

 http://www.ohiohtcia.org/resource.html

 5

A word about the “GNU” in GNU/Linux

When we talk about the Linux operating system, we are actually talking
about the GNU/Linux operating system (OS). Linux itself is not an OS. It
is just a kernel. The OS is actually a combination of the Linux kernel and
the GNU utilities that provide the tools allowing us to interact with the
kernel. Which is why the proper name for the OS is “GNU/Linux”. We
(incorrectly) call it “Linux” for convenience.

Why Learn Linux?

One of the questions I hear most often is: “why should I use Linux when I
already have [insert Windows GUI forensic tool here]?”

There are many reasons why Linux is quickly gaining ground as a forensic
platform. I’m hoping this document will illustrate some of those attributes.

• Control – not just over your forensic software, but the whole OS and
attached hardware.

• Flexibility – boot from a CD (to a complete OS), file system support,
platform support, etc.

• Power – A Linux distribution is a forensic tool.

Another point to be made is that simply knowing how Linux works is
becoming more and more important. While many of the Windows based
forensic packages in use today are fully capable of examining Linux
systems, the same cannot be said for the examiners.

As Linux becomes more and more popular, both in the commercial world
and with desktop users, the chance that an examiner will encounter a Linux
system in a case becomes more likely (especially in network investigations).
Even if you elect to utilize a Windows forensic tool to conduct your
analysis, you must at least be familiar with the OS you are examining. If
you do not know what is normal, then how do you know what does not
belong? This is true on so many levels, from the actual contents of various
directories to strange entries in configuration files, all the way down to how
files are stored. While this document is more about Linux as a forensic tool
rather than analysis of Linux, you can still learn a lot about how the OS
works by actually using it.

 6

I. Installation

First and foremost, know your hardware. If your Linux machine is to be a
dual boot system with Windows, then use the Windows Device Manager to
record all your installed hardware and the settings used by Windows. If you
are setting up a standalone Linux system, then gather as much
documentation about your system as you can. This has become much less
important with the evolution of the Linux install routines. Hardware
compatibility and detection have been greatly improved over the past couple
of years.

• Hard drive – knowing the size and geometry is helpful when planning

your partitioning.
• SCSI adapters and devices (note the adapter chipset). SCSI is very well

supported under Linux.
• Sound card (note the chipset).
• Video Card (important to know your chipset and memory, etc.).
• Monitor timings

• Horizontal and vertical refresh rates.
• Network card settings (chipset).
• Network Parameters:

• IP (if not DHCP)
• Netmask
• Broadcast address
• DNS servers
• Default gateway

• Modem
• NO WINMODEMS. (Support is being worked on – check

http://www.linmodems.org. Note that if you have an HSF modem,
Conexant has released Linux drivers! Find them at
http://www.conexant.com/customer/. I use them, and they work.)

• USB support is in kernel 2.4. USB is standard in current distributions.
• IEEE1394 (firewire) support is included in current distributions.

 7

Most distributions have a plethora of documentation, including online
help and documents in downloadable form. For example, Red Hat users can
check for hardware compatibility and installation issues at:
http://www.redhat.com/support/hardware/

If you cannot find your monitor documentation and need it for XFree86
(the Linux GUI) setup, then go to:
http://www.monitorworld.com/monitors_home.html

Distributions

 Linux comes in a number of different “flavors”. These are most often
referred to as “distributions” (“distro”). Default kernel configuration, tools
that are included (system management and configuration, etc.) and the
package format (i.e., the upgrade path) most commonly differentiate the
various Linux distros.

It is common to hear users complain that device X works under Suse
Linux, but not on Red Hat, etc. Or that device Y did not work under Red
Hat version 7.3, but an upgrade to 8.0 “fixed it”. Most often, the difference
is in the version of the Linux kernel being used and therefore the updated
drivers, or the patches applied by the distribution vendor, not the version of
the distribution (or the distribution itself).

Red Hat

 One of the most popular Linux distributions (right now). Red
Hat works with companies like Dell, IBM and Intel to assist business in the
adoption of Linux for enterprise use. Use of RPM and Kickstart began the
first “real” user upgrade paths for Linux. Red Hat is an excellent choice for
beginners because of the huge install base and the proliferation of online
support. The install routine is well polished and hardware support is well
documented. While Red Hat has elected to move into a more enterprise
oriented business model, it is still a viable option for the desktop through the
“Fedora Project” (http://fedora.redhat.com/).

If you are installing Linux specifically to accompany this document,
then I’d suggest any of Red Hat 7.3, 8.0, or 9.0, depending on your required
hardware support.

 8

Debian

 Not really for beginners. The installation routine is not as
polished as some other distributions. Debian has always been a hacker
favorite. It is also one of the most “non-commercial” Linux distributions,
and true to the spirit of GNU/GPL.

SuSE
 Another distribution with its own proprietary install program,
YaST2. SuSE is German in origin. It is by far the largest software inclusive
distribution, and comes with six (6!) CD’s (or a DVD).

Slackware

 The original commercial distribution. Slackware has been
around for years. Installation is not as easy as others. Good standard Linux.
Not over-encumbered by GUI config tools.

Mandrake Linux

Red Hat based and rapidly gaining on Red Hat’s desktop
market share, Mandrake is a favorite of many beginners and desktop users.
It is heavy on GUI configuration tools, allowing for easy migration to a
Linux desktop environment. Mandrake is also a good choice to use with this
document’s exercises.

Gentoo Linux
 Source-centric distribution that is optimized during install – my

personal favorite. Once through the complex installation routine, upgrading
the system and adding software is made extremely easy through Gentoo’s
“Portage” system. Not for beginners, though. You are left to configure the
system entirely on your own.

My suggestion for the absolute beginner would be either the newest

version of Mandrake (currently 9.2) or Red Hat (currently 9.0). Mandrake is
actually a Red Hat based distribution with numerous GUI enhancements that
make the learning process easier for “newbies”. Also keep in mind that Red
Hat is discontinuing support for it’s free distribution, which is being
replaced by the Fedora Project. If you really want to “dive in” and bury
yourself, go for Gentoo, Debian or Slackware. If you choose one of the
latter distributions, be prepared to read…a lot.

 9

One thing to keep in mind: If you are going to use Linux in a forensic

capacity, then try not to rely on GUI tools too much. Almost all settings and
configurations in Linux are maintained in text files (usually in either your
home directory, or in /etc). By learning to edit the files yourself, you avoid
problems when either the X window system is not available, or when the
specific GUI tool you rely on is not on a system you might come across. In
addition, knowledge of the text configuration files will give you insight into
what is “normal”, and what might have been changed when you examine a
subject system.

Installation Methods:
• Buy a book! (Most come with a distribution).
• Download the needed files, create a boot and root disk and read

online! (See the “Linux Support” section at the end of this document).
• Get hold of a distribution CD and boot from it (change your bios to

boot from the CD if needed).
• Use a bootable Linux distribution (covered later).

 If you have access to a bootable installation CDROM (download an
ISO image and burn it on a CDR, buy a book that includes a CD set, etc.),
then this process will be easier. Much of the work is done for you, and
relatively safe defaults are provided. As mentioned earlier, hardware
detection has gone through some great improvements in the last year or two.
I strongly believe that Red Hat or Mandrake Linux are far easier and faster
to install than Windows 2000. Typical Linux installation is well
documented online (check the “how-tos” at the Linux Documentation
Project: http://www.tldp.org/). There are numerous books available on the
subject, and as previously mentioned most of these are supplied with a Linux
distribution ready for install.

 Bootable ISO’s can downloaded from http://www.linuxiso.org/ and
burned to a CD. Familiarize yourself with Linux disk and partition naming
conventions (covered in Chapter II of this document) and you should be
ready to start.

 10

Installation Overview

1) Decide on standalone Linux or dual boot.

-Install Windows first in a dual boot system.
-Determine how you want the Linux system to be partitioned.
-Do NOT create any extra partitions with Windows fdisk. Just leave
the space unallocated. The Linux install will create the partitions (or
allow you to).

2) Boot the Linux Media
-Hopefully you have a bootable CDROM (and booting from the CD is
supported in your BIOS.)
-In many cases you can use boot.img from the installation CD to
create a bootable floppy for the install if booting from the CD is not
possible.

3) Accepting most defaults works.
-Your hardware will be detected and configured under most (if not all)
circumstances. If the install freezes or breaks, try again in “text”
mode or “expert” mode, if available. This is often caused by video
card or SCSI card problems or conflicts. Support online is extensive
if you have problems.

4) Partition and format for Linux
-Use at least two partitions.
-Root (/) as type “Linux Native”.
-Swap as type “Linux Swap” (use 2x your system memory as a
starting point for swap size).
-You will hear a lot about using multiple partitions for different
directories. Don’t let that confuse you. There are arguments both for
and against using multiple partitions for a Linux file system. If you
are just starting out, just use one large root (/) partition, and one swap
partition. This will allow for the least confusion. You will see
examples of other partitioning schemes later.

If you are comfortable with the idea of multiple partitions for your
Linux install, then it is recommended that you use at least a separate
/boot partition along with the root (/) and swap.

 11

5) Package installation (system)
-When asked which packages to select for installation, it is usually
safe for a beginner to select “everything” (as in Red Hat or
Mandrake). This allows you to try all the packages, along with both
KDE and Gnome (X Window GUIs). This can take as much as 2GB
on some of the newer distributions, however it includes all the
software you are likely to need for a long time (including “office”
type applications). This is not really optimal or recommended, but for
a learning box it will give you the most exposure to available software
for experimentation.

6) Installation Configuration
-Sound

-Usually automatic. If not, search the Web. The answer is out
there. If the sound is not configured automatically, try running
sndconfig if it is available (i.e. most Redhat systems).

-Xfree86 (X Window system)
-Know your hardware.
-If you choose to configure X during the installation routine, do
not click “yes” when asked if you want X to start automatically
every time you system boots. This can make problem solving
difficult and results in less control over the system. You can
always start the GUI with “startx” from the command line.

7) Boot Method (the Boot loader…selects the OS to boot)

-LILO or GRUB.
-Some people find GRUB more flexible and secure. Usually select
the option to install to the MBR. The presences of other boot
loaders determine where to install LILO or GRUB.
-The boot loader contains the code that points to the kernel to be
booted. Check www.tldp.org for “multiOS” and “multiboot” How-
To documents.

-Bootdisk should be created for rescue.

8) Create a username for yourself
-Linux is a multiuser system. It is designed for use on networks
(remember, it is based on Unix). The “root” user is the system
administrator, and is created by default during installation. Exclusive
use of the “root” login is DANGEROUS. Linux assumes root knows

 12

what he or she is doing and allows “root” to do anything he or she
wants, including destroy the system. Create a new user. Don’t log in
as “root” unless you must. Having said this, much of the work done
for forensic analysis must be done as “root” to allow access to raw
devices and system commands.

The New 2.6 Linux Kernel

 In December of 2003, the Linux 2.6 kernel was released. While this is
another milestone in the Linux saga, it would be wise to stay with the 2.4
kernel until tests are done on changes that affect our work.

 Many of the changes in 2.6 are geared toward enterprise use and
scalability. The new kernel release also has a number of infrastructure
changes that could have a huge impact on Linux as a forensic platform. For
example, there is enhanced support for USB and a myriad of other external
devices. The kernel module and entire device sub-systems have been
changed and improved, making them more robust. And we will soon have
access to “user mode” Linux that could provide a whole new environment
for us to work in.

 As with all forensic tools, we need to have a clear view of how the
new kernel will interact with our forensic platforms and subject hardware.
This will take some time.

 13

II. Linux Disks, Partitions and the Filesystem

Disks
 Linux treats its devices as files. The special directory where these
"files" are maintained is "/dev".

• Floppy (a:)
• Floppy (b:)
• 1st Hard disk (master, IDE-0)
• Hard disk (slave, IDE-0)
• Hard disk (master, IDE-1)
• 1st SCSI hard disk
• 2nd SCSI hard disk

/dev/fd0
/dev/fd1
/dev/hda
/dev/hdb
/dev/hdc, etc.
/dev/sda
/dev/sdb, etc.

Partitions

1st Hard disk (master, IDE-0)
• 1st Primary partition
• 2nd Primary partition
• 1st Logical drive (on ext’d part)
• 2nd Logical drive

2nd Hard disk (slave, IDE-0)
• 1st Primary partition

CDROM or 3rd disk (master, IDE-1)
CDROM (SCSI)
1st SCSI disk

• 1st Primary partition

/dev/hda
/dev/hda1
/dev/hda2, etc.
/dev/hda5
/dev/hda6, etc.
/dev/hdb
/dev/hdb1, etc.
/dev/hdc
/dev/scd0
/dev/sda
/dev/sda1, etc.

The pattern described above is fairly easy to follow. If you are

using a standard IDE disk, it will be referred to as "hdx" where the "x" is
replaced with an "a" if the disk is connected to the primary IDE controller
as master and a "b" if the disk is connected to the primary IDE controller
as a slave device. In the same way, the IDE disks connected to the
secondary IDE controller as master and slave will be referred to as "hdc"
and "hdd" respectively.1

1 Some distributions support devfs which uses a different naming scheme. Don’t let this confuse you. The
pattern described above is still supported through “links” for compatibility. See
http://www.atnf.csiro.au/people/rgooch/linux/docs/devfs.html for more information.

 14

This is an example of the output of fdisk -l /dev/hda on a dual boot
system:

Disk /dev/hda: 255 heads, 63 sectors, 1582 cylinders
Units = cylinders of 16065 * 512 bytes

 Device
/dev/hda1
/dev/hda2
/dev/hda3
/dev/hda4
/dev/hda5
/dev/hda6

Boot
*

Start
1
256
639
650
650
1454

End
255
638
649
1582
1453
1582

Blocks
2048256
3076447+
88357+
7494322+
6458098+
1036161

Id
b
83
82
f
b
b

System
Win95 FAT32
Linux
Linux swap
Win95 Ext’d (LBA)
Win95 FAT32
Win95 FAT32

fdisk –l /dev/hdx gives you a list of all the partitions available on a

particular drive. Each partition is identified by its Linux name. The "boot
flag" is indicated, and the beginning and ending cylinders for each partition
is given. The number of blocks per partition is displayed. Finally, the
partition "Id" and file system type are displayed. To see a list of valid types,
run fdisk and at the prompt type "l" (the letter “el”). Do not confuse Linux
fdisk with DOS fdisk. They are very different. The Linux version of fdisk
provides for much greater control over partitioning.

BEFORE FILESYSTEMS ON DEVICES CAN BE USED, THEY

MUST BE MOUNTED! Any file systems on partitions you define during
installation will be mounted automatically every time you boot. We will
cover the mounting of file systems in the section that deals with Linux
commands, after you have some navigation experience.

Keep in mind, that even what not mounted, devices can still be written to.

Simply not mounting a file system does not protect it from being
inadvertently changed through your actions.

Note that if you use a parallel ZIP drive or USB disk (thumb drive,

memory stick, etc.), it will be accessed as /dev/sda (assuming no other SCSI
devices) or /dev/sdb. Support must be compiled either into the kernel, or as
a loadable module. Most new distros have USB support already included.
Also, a Linux formatted ZIP disk is /dev/sda1 and a DOS (FAT) formatted
ZIP disk is /dev/sda4 (no, I don't know why). It’s not unusual for Linux to
recognize storage peripherals as SCSI devices. The same is true for

 15

IEEE1394 “firewire” devices. In order mount file systems on these types of
“external” devices, we may need to delve a little deeper into modules.

Using modules
It’s difficult to decide when to introduce modules to a new user. The

concept can be a little confusing, but “out of the box” Linux distributions
rely heavily on modules for device and file system support. For this reason,
we will make an effort to get familiar with the concept early on.

Modules are really just “drivers” that can be loaded and unloaded
from the kernel dynamically. They are object files (*.o) that contain the
required driver code for the supported device or option (file system support
under Linux is often loaded as a module). The various modules available on
your system are located in /lib/modules/<KERNEL-VERSION>/. Note that
the current kernel version running on your system can be found using the
command uname -r.

Modules are installed and removed from the system “on the fly” using
the following commands (as root):

insmod -to insert the module
 rmmod -to remove the module
 lsmod -to get a list of currently installed modules

For example, to get USB support for a USB thumb drive on my
system, I need to load a couple of modules. With the USB device plugged
in, we install the needed modules (usb-uhci.o for many controllers, and usb-
storage.o for the storage interface) with:

insmod usb-uhci (depending on your USB controller)
insmod usb-storage

Note that while the module is named with a “.o” extension, we do not

include that in the insertion command.

Another method we can use to install modules is with the command
modprobe. This command installs the requested module after attempting to
determine if there are any other modules that must be loaded to satisfy
dependencies. Check out man depmod and man modprobe.

 16

You can check to see if the module has been correctly loaded with:

 lsmod

The output should be:
Module Size Used by
usb-storage 104384 0
usb-uhci 24356 0 (unused)

 Note that the output of lsmod will include any other drivers loaded by
the system as well (including those loaded at boot time).

 Often, once you have loaded the required drivers, you will see activity
lights on the drives kick in as the equipment becomes accessible. Again,
USB and Firewire drives are usually picked up as SCSI devices once the
modules are loaded, so check /dev/sda or /dev/sdb using fdisk to see if the
device is recognized and which partitions are available.

The above commands will get USB working on many systems, for
Firewire, try installing the modules ieee1394.o, ohci1394.o, and for Firewire
hard drive support, sbp2.o. If these commands don’t work for your system’s
USB or Firewire controller, then try searching Google for answers specific
to your hardware.

Modules on Newer systems
 On newer Linux systems (like the one you are probably using now)
there is often an automatic kernel module daemon that handles the loading
and unloading of modules automatically. When you issue a command that
requires a module that is not yet loaded, the kernel will often detect your
request and load the applicable module. The module “autoloader” is useful
and ends the need to install modules by hand using insmod in some cases
(like when mounting supported file systems). It is likely that your system
follows this convention. I would not suggest relying on this feature,
however. If you have the kernel sources on your system, check out
/usr/src/linux/Documentation/modules.txt for more detailed information.

 17

The Filesystem

 Like the Windows file system, the Linux file system is hierarchical.
the "top" directory is referred to as "the root" directory and is represented by
"/". Note that the following is not a complete list, but provides an
introduction to some important directories.

 / (“root” not to be confused with “/root”)
 |_ bin
 | |_ <files> ls, chmod, sort, date, cp, dd
 |_boot
 | |_<files> vmlinuz, system.map
 |_ dev
 | |_<devices> hd*, tty*, sd*, fd*, cdrom
 |_ etc
 | |_X11
 | |_ <files> XF86Config, X
 | |_<files> lilo.conf, fstab, inittab, modules.conf
 |_ home
 | |_barry (your user’s name is in here)
 | |_<files> .bashrc, .bash_profile, personal files
 | |_other users
 |_mnt
 | |_cdrom
 | |_floppy
 | |_other external file system mount points
 |_root
 | |_<root user's home directory>
 |_sbin
 | |_<files> shutdown, cfdisk, fdisk, insmod
 |_usr
 | |_local
 | |_lib
 | |_man
 |_var
 | |_log

 18

On most Linux distributions, the directory structure is organized in the
same manner. Certain configuration files and programs are
distribution dependant, but the basic layout is similar to this.

Directory contents can include:

• /bin -Common commands.
• /boot -Files needed at boot time, including the kernel images pointed

to by LILO (the LInux LOader) or GRUB.
• /dev -Files that represent devices on the system. These are actually

interface files to allow the kernel to interact with the hardware and the
file system.

• /etc -Administrative configuration files and scripts.
• /home -Directories for each user on the system. Each user directory

can be extended by the respective user and will contain their personal
files as well as user specific configuration files (for X preferences,
etc.).

• /mnt -Provides mount points for external, remote and removable file
systems.

• /root -The root user's home directory.
• /sbin -Administrative commands and process control daemons.
• /usr -Contains local software, libraries, games, etc.
• /var -Logs and other variable file will be found here.

Another important concept when browsing the file system is that of

relative versus explicit paths. While confusing at first, practice will make
the idea second nature. Just remember that when you provide a pathname to
a command or file, including a “/” in front means an explicit path, and will
define the location starting from the top level directory (root). Beginning a
pathname without a “/” indicates that your path starts in the current
directory and is referred to as a relative path. More on this later.

 19

III. The Linux Boot Sequence (Simplified)

Booting the kernel

 The first step in the (simplified) boot up sequence for Linux is loading
the kernel. The kernel image is usually contained in the /boot directory. It
can go by several different names…

• bzImage
• vmlinuz

Sometimes the kernel image will specify the kernel version contained

in the image, i.e. bzImage-2.4.18. Very often there is a soft link (like a
shortcut) to the most current kernel image in the /boot directory. It is
normally this soft link that is referenced by the boot loader, LILO (or
GRUB). The boot loader specifies the “root device” (boot drive), along with
the kernel version to be booted. For LILO, this is all controlled by the file
/etc/lilo.conf. Each “image=” section represents a choice in the boot screen.
GRUB is a more recent boot loader used by many Linux distributions. The
concept is the same. You can look at the man or info pages for either boot
loader for more information.

more /etc/lilo.conf

boot=/dev/hda
map=/boot/map
install=/boot/boot.b
prompt
timeout=50
image=/boot/vmlinuz-2.4.17 Defines the Linux kernel to boot
 label=linux_old Menu choice in LILO
 root=/dev/hda3 Where the root file system is found
 read-only
other=/dev/hda1 Defines alternate boot option
 label=Win2k Menu choice in LILO
 table=/dev/hda

 In the case of GRUB, each section beginning with “title” is a choice
for booting and can include Linux as well as other operating systems,
including Windows. Note again the reference to the kernel location, and the
“root device” (where the root filesystem is located). GRUB starts it’s

 20

counting from 0, so where you see “hd0,0” it is referring to the first IDE
disk, followed by the first partition. See the info or man page for GRUB.

In the following GRUB example, there will be three different Linux
kernel choices offered in the boot menu. They all use the same root file
system, but differ in the kernel image loaded from the /boot partition.

more /etc/grub.conf

boot=/dev/hda
default=0
timeout=10
splashimage=(hd0,0)/boot/grub/splash.xpm.gz
title Linux (2.4.20)
 root (hd0,0)
 kernel /boot/bzImage-2.4.20 ro root=/dev/hda1
title Linux-enh (2.4.20-xfs-enh)
 root (hd0,0)
 kernel /boot/bzImage-2.4.20-xfs-enh ro root=/dev/hda1
title Linux (2.4.19)
 root (hd0,0)
 kernel /boot/bzImage-2.4.19 ro root=/dev/hda1

Once the system has finished booting, you can see the kernel
messages that “fly” past the screen during the booting process with the
command dmesg. Often, this command can be used to find hardware
problems, or to see how your suspect drive was detected (geometry, etc).
The output can be piped through a paging viewer to make it easier to see:

dmesg | less

Initialization

 The next step starts with the program /sbin/init. This program really
has two functions:

• initialize the runlevel and startup scripts
• terminal process control (respawn terminals)

 21

In short, the init program is controlled by the file /etc/inittab. It is this
file that controls your runlevel and the global startup scripts for the system.

Runlevel

 The runlevel is simply a description of the system state. For our
purposes, it is easiest to say that (for Red Hat, at least – other systems, like
Suse may differ):

• runlevel 0 = shutdown
• runlevel 1 = single user mode
• runlevel 3 = full multiuser mode / text login
• runlevel 5 = full multiuser / X11 / graphical login
• runlevel 6 = reboot

In the file /etc/inittab you will see a line similar to:

id:3:initdefault:

It is here that the default runlevel for the system is set. If you want a
text login (which I would strongly suggest), set the above value to “3”. You
can always use “startx” to get to the X Window GUI system. If you want a
graphical login, you would edit the above line to contain a “5”.

 22

Global Startup Scripts
After the default runlevel has been set, init (via /etc/inittab) then runs

the following scripts:
• /etc/rc.d/rc.sysinit - handles system initialization, file system
mount and check, PNP devices, etc.
• /etc/rc.d/rc X - where X is the runlevel passed as an argument
by init. This script then calls the specified script for the runlevel that
is being started.
• /etc/rc.d/rc.local - called from within the specific runlevel
scripts, rc.local is a general purpose script that can be edited to
include commands that you want started at bootup (sort of like
autoexec.bat).

Again, this is somewhat Red Hat / Mandrake specific. Other

distributions can differ slightly (some differ greatly!), but the concept
remains consistent. Once you become familiar with the process, it will make
sense. The ability to manipulate startup scripts is an important step in your
Linux learning process.

Bash
 Bash (Bourne Again Shell) is the default command shell for Red Hat,
Mandrake, and many other Linux distros. It is the program that sets the
environment for your command line experience in Linux. The functional
equivalent in DOS would be command.com. There are a number of shells
available, but we will cover bash here.

There are actually quite a few files that can be used to customize a
user’s Linux experience. Here are two that will get you started. I am
assuming here that you are using the bash shell.

• /home/$USER/.bashrc2 - This script is located in each user’s
home directory ($USER) and can be edited by the user, allowing him
or her to customize their own environment. It is in this file that you
can add aliases to change the way commands respond.
• /etc/bashrc - This is the global bash initialization file. Edits
made to this file will be applied to all bash shell users.

2 In bash we define the contents of a variable with a dollar sign. $USER is a variable that represents the
name of the current user. To see the contents of shell individual variables, use “echo $VARNAME”.

 23

The bash startup sequence is actually more complicated than this, but
this should give you a starting point. In addition to the above files, check
out /home/$USER/.bash_profile and /etc/profile. The man page for bash is
an interesting (and long) read, and will describe some of the customization
options. In addition, reading the man page will give a good introduction to
the programming power provided by bash scripting.

 24

IV. DOS / Linux Equivalent Commands

"DOS command" = Linux equivalent

"dir" = ls list files.
 ls –F classifies files and directories.
 ls –a show all files (including hidden).
 ls –l detailed file list (long view).

 ls –lh detailed list (long, with “human readable” file sizes).

 Output of ls -l

total 11
drwx------ 5 barry 501 1024 Feb 7 15:07 Desktop
drwxr-xr-x 2 barry users 1024 Feb 9 08:19 Files
drwx------ 2 barry users 1024 Dec 18 15:58 Mail
-rw-r--r-- 1 barry users 0 Feb 9 09:21 Mydata.file.today
drwxr-xr-x 26 barry users 1024 Jan 23 00:49 Office51
drwxr-xr-x 2 barry users 1024 Nov 8 16:21 Prog
drwxr-xr-x 2 barry users 1024 Dec 16 15:42 Programming
drwxr-xr-x 2 barry users 1024 Feb 9 09:27 Sample
drwxr-xr-x 2 barry users 1024 Feb 9 08:41 autosave
drwxr-xr-x 2 barry users 1024 Feb 8 15:50 bin
drwx------ 2 barry 501 1024 Oct 9 14:00 nsmail
drwxrwxr-x 3 barry 501 1024 Jan 23 00:42 software
-rw-r--r-- 1 barry users 0 Feb 9 09:20 textfile

"cd" = cd <dir> change directory to <dir>.
 cd (by itself) shortcut back to your home directory.

cd .. up one directory (note the space between “cd” and
“..”.

 cd - back to the last directory you were in.
cd /dirname change to the specified directory. Note that the

addition of the “/” in front of the directory implies
an explicit (absolute) path, not a relative one.
With practice, this will make more sense.

cd dirname change to the specified directory. The lack of a “/”
in front of the directory name implies a relative
path meaning dirname is a subfolder of our current
directory.

 25

"copy" = cp
 cp sourcefile destinationfile copy a file.

“cls” = clear
 clears the terminal screen of all text and returns a prompt.

"move" and "ren" = mv
 mv sourcefile destinationfile move or rename a file.

"del" = rm
 rm filename deletes a file.
 rm -r recursively deletes all files in
 directories and subdirectories.

"help" or " /?" = man
 man command displays a "manual" page for the specified
 command. Use "q" to quit. VERY USEFUL.

 If you want to find information about a command called find,
including its usage, options, output, etc., then you would use the “man page”
for the command find.

Output of man find:

FIND(1L) FIND(1L)
 find - search for files in a directory hierarchy

SYNOPSIS
 find [path...] [expression]

DESCRIPTION
 This manual page documents the GNU version of find. find
 searches the directory tree rooted at each given file name
 by evaluating the given expression from left to right,
 according to the rules of precedence (see section OPERA-
 TORS), until the outcome is known (the left hand side is
 false for and operations, true for or), at which point
 find moves on to the next file name.
 <CONTINUES WITH MORE INFO>

 26

"md" = mkdir
mkdir directoryname creates a directory. Again, remember the

difference between a relative and explicit
path here.

 "type" = cat or more or less

cat filename The simplest form of file display, cat streams the
contents of a file to the standard output (usually
the terminal). cat actually stands for
“concatenate”. This command can also be used to
add files together (useful later on…). For
example:

 cat file1 file2 > file3

Takes the contents of file1 and file2 and streams
the output which is redirected to a single file, file3.
This effectively adds the two files into one single
file (the original files remain unchanged).

 more filename displays the contents of a file one page at a time.
 Unlike its DOS counterpart, Linux more takes
 filenames as direct arguments.

less filename less is a better more. Supports scrolling in both
directions, and a number of other powerful
features. less is actually the GNU version of
more, and on many systems you will find that
more is actually a link to less.

 Note that you can string together several options. For example:

 ls -aF

 will give you a list of all files (-a), including hidden files, and
file/directory classification (-F, which shows "/" for directories, "*" for
executables, and "@" for links).

 27

Output of ls –aF :
./

../

.Xauthority

.Xdefaults

.bash_history

.bash_logout

.bash_profile

.bashrc

.emacs

.gnome/

.gnome_private/

.gqviewrc

.gxedit

.gxedit.apps

.kaudioserver

.kde/

.kderc

.kpackage/

.mailcap

.maxwellrc

.netscape/

.sversionrc

.user.rdb

.vimrc

.zshrc

Desktop/

Files/

Mail/

Mydata.file.today

Office51/

Prog/

Programming/

Sample/

autosave/

bin/

mylink@

nsmail/

samp_script.sh*

snapshot01.gif

software/

textfile

Additional useful commands

grep - search for patterns.

 grep pattern filename

Grep will look for occurrences of pattern within the file filename.
grep is an extremely powerful tool. It has hundreds of uses given the
large number of options it supports. Check the man page for more
details.

find -allows you to search for a file (wild cards – actually “expressions”

permitted). To look for your XF86Config file, you might try:

 find / -name XF86Config -print

This means "find, starting in the root directory (/), by name,
XF86Config and print the results to the screen". find also allows you
to search by file type or even file times (actually inode times).

pwd -prints the present working directory to the screen.

 pwd
 /home/barry

 28

file -categorizes files based on what they contain, regardless of the name
 (or extension, if one exists). Compares the file header to the "magic"
 file in an attempt to ID the file type. For example:

 file snapshot01.gif
 snapshot01.gif: GIF image data, version 87a, 800 x 600

ps -list of current processes. Gives the process ID number (PID), and the

terminal on which the process is running.

ps -ax shows all processes (-a), and all
 processes without an associated
 terminal (-x).

Output (partial) of ps -ax on my system as it is running right now:

PID TTY STAT TIME COMMAND
 1 ? S 0:04 init
 2 ? SW 0:00 [kflushd]
 3 ? SW 0:00 [kupdate]
 4 ? SW 0:00 [kpiod]
 5 ? SW 0:00 [kswapd]
 191 ? S 0:01 /sbin/pump -i eth0
 243 ? S 0:00 klogd
328 tty1 SW 0:00 [login]
 329 tty2 S 0:00 login -- root
 330 tty3 S 0:00 /sbin/mingetty tty3
 331 tty4 S 0:00 /sbin/mingetty tty4
 332 tty5 S 0:00 /sbin/mingetty tty5
 333 tty6 S 0:00 /sbin/mingetty tty6
 340 tty1 SW 0:00 [bash]
 353 tty1 S 0:00 sh /usr/X11R6/bin/startx
 360 tty1 S 0:00 xinit /etc/X11/xinit/xinitrc -- :0 -auth /home/barry/
 361 ? R 2:04 /etc/X11/X :0 -auth /home/barry/.Xauthority
 365 tty1 S 0:05 kwm
 368 tty1 S 0:00 kbgndwm

strings -prints out the readable characters from a file. Will print out

strings that are at least four characters long (by default)from a
file. Useful for looking at data files without the originating
program, and searching executables for useful strings, etc.

 29

chmod -changes the permissions on a file. (See the section in this
document on permissions).

chown -changes the owner of a file in much the same way as chmod

changes the permissions.

chown ralph filename

-rwxrwxr-- 1 ralph user 1643 Jan 19 23:23 filename

chgrp - changes a file’s group attribute. Works the same as chown,

but affects the group instead of the owner.

shutdown -this command MUST be used to shutdown the machine and

cleanly exit the system. This is not DOS. Turning off the
machine at the prompt is not allowed and can damage your file
system (in some cases)3. You can run several different options
here (check the man page for many more):

shutdown -r now -will reboot the system now (change to

runlevel 6).
shutdown -h now -will halt the system. Ready for power

down (change to runlevel 0).

File Permissions

Files in Linux have certain specified file permissions. These
permissions can be viewed by running the ls -l command on a directory or
on a particular file. For example:

 ls –l filename

 -rwxr-xr-x 1 barry user 1643 Jan 19 23:23 filename

If you look close at the first 10 characters, you have a dash (-)

followed by 9 more characters. The first character describes the type of file.

3 This has become much less of an issue with the newer journaled file systems used by Linux.

 30

A dash (-) indicates a regular file. A "d" would indicate a directory, and "b"
a special block device, etc.

First character of ls -l output:

- = regular file
d = directory
b = block device
c = character device
l = link

The next 9 characters indicate the file permissions. These are given in

groups of three:

Owner Group Others

rwx rwx rwx

 The characters indicate
 r = read
 w = write
 x = execute

So in the above filename we have

 -rwx r-x r-x

 This gives the file owner read, write and execute permissions (rwx),
but restricts other members of the owner’s group and users outside that
group to only read and execute the file (r-x).

Now back to the chmod command. There are a number of ways to
use this command, including explicitly assigning r, w, or x to the file. We
will cover the octal method here because the syntax is easiest to remember
(and I find it most flexible). In this method, the syntax is as follows

 chmod octal filename

octal is a three digit numerical value in which the first digit represents
the owner, the second digit represents the group, and the third digit
represents others outside the owner's group. Each digit is calculated by
assigning a value to each permission:

 31

 read (r) = 4
 write (w) = 2
 execute (x) = 1

For example, the file filename in our original example has an octal
permission value of 755 (rwx =7, r-x =5, r-x=5). If you wanted to change
the file so that the owner and the group had read, write and execute
permissions, but others would only be allowed to read the file, you would
issue the command:

chmod 774 filename

4(r)+2(w)+1(x)=7
4(r)+2(w)+1(x)=7
4(r)+0(-)+0(-) =4

 A new long list of the file would show:

-rwxrwxr-- 1 barry user 1643 Jan 19 23:23 filename
(rwx=7, rwx=7, r--=4)

Metacharacters
 Linux also supports wildcards (metacharacters)

• * for multiple characters (including ".").
• ? for single characters.
• [] for groups of characters or a range of characters or numbers.

This is a complicated and very powerful subject, and will require further
reading… Refer to “regular expressions” in your favorite Linux text, along
with “globbing” or “shell expansion”. There are important differences that
can confuse a beginner, so don’t get discouraged by confusion over what “*”
means in different situations.

 32

Command Hints
1. Linux supports command line editing.
2. Linux has a history list of previously used commands (stored in
 .bash_history in your home directory).
 -use the keyboard arrows to scroll through commands
 you've already typed.
3. Linux commands and filenames are CASE SENSITIVE.
4. Learn output redirection for stdout and stderr “>” and “2>”.
5. Linux uses “/” for directories, DOS uses “\”.
6. Linux uses “-“ for command options, DOS uses “/”
7. To execute commands in the current directory (if the current directory

is not in your PATH), use the syntax "./command". This tells Linux to
look in the present directory for the command.

Pipes and Redirection
 Like DOS, Linux allows you to redirect the output of a command
from the standard output (usually the display or "console") to another device
or file. This is useful for tasks like creating an output file that contains a list
of files on a mounted volume, or in a directory. For example:

ls -al > filelist.txt

The above command would output a long list of all the files in the current
directory. Instead of outputting the list to the console, a new file called
"filelist.txt" will be created that will contain the list. If the file "filelist.txt"
already existed, then it will be overwritten. Use the following command to
append the output of the command to the existing file, instead of over-
writing it:

ls -al >> filelist.txt

 Another useful tool similar to that available on DOS is the command
pipe. The command pipe takes the output of one command and "pipes" it
straight to the input of another command. This is an extremely powerful
tool for the command line. Look at the following process list:

 33

ps -ax

 PID TTY STAT TIME COMMAND
 1 ? S 0:04 init
 232 ? S 0:00 syslogd -m 0
 271 ? S 0:00 inetd
 328 tty1 SW 0:00 [login]
 329 tty2 S 0:00 login -- root
 330 tty3 SW 0:00 [mingetty]
 340 tty1 SW 0:00 [bash]
 353 tty1 SW 0:00 [startx]
 360 tty1 SW 0:00 [xinit]
 361 ? R 2:41 /etc/X11/X :0 -auth /home/barry/.Xauthority
 519 pts/0 S 0:00 bash
 2490 tty2 S 0:00 -bash
 2727 pts/1 R 0:00 ps -ax

What if all you wanted to see were those processes ID's that indicated

a bash shell? You could "pipe" the output of ps to the input of grep,
specifying "bash" as the pattern for grep to search. The result would give
you only those lines of the output from ps that contained the pattern "bash".

 ps -ax | grep bash

340 tty1 SW 0:00 [bash]
519 pts/0 S 0:00 bash
2490 tty2 S 0:00 -bash

A little later on we will cover using pipes on the command line to help
with analysis. Stringing multiple powerful commands together is one of
using Linux for forensic analysis.

The SuperUser
 If Linux gives you an error message "Permission denied", then in all
likelihood you need to be "root" to execute the command or edit the file, etc.
You don't have to log out and then log back in as "root" to do this. Just use
the su command to give yourself root powers (assuming you know root’s
password).

su -

 34

 Then enter the password when prompted. You now have root
privileges (the system prompt will reflect this). Note that the "-" after su
allows Linux to apply root's environment (including root’s path) to your su
login. So you don't have to enter the full path of a command. Actually, su is
a “switch user” command, and can allow you to become any user (if you
know the password), not just root.

When you are finished using your su login, return to your own self by

typing exit.

A word of caution: Be VERY judicious in your use of the root login.

It can be destructive. For simple tasks that require root permission, use su
and use it sparingly.

 35

V. Editing with Vi

 There are a number of terminal mode (non-GUI) editors available in
Linux, including emacs and vi. You could always use one of the available
GUI text editors in Xwindow, but what if you are unable to start X? The
benefit of learning vi or emacs is your ability to use them from an xterm, a
character terminal, or a telnet (use ssh instead!) session, etc. We will
discuss vi here. (I don't do emacs :-)). vi in particular is useful, because you
will find it on all versions of Unix. Learn vi and you should be able to edit a
file on any Unix system.

Using Vi
 You can start vi either by simply typing vi at the command prompt, or
you can specify the file you want to edit with vi filename. If the file does
not already exist, it will be created for you.

 vi consists of two operating modes, command mode and edit mode.
When you first enter vi you will be in command mode. Command mode
allows you to search for text, move around the file, and issue commands for
saving, save-as, and exiting the editor. Edit mode is where you actually
input and change text.

 In order to switch to edit mode, type either a (for append),i (for
insert), or one of the other insert options listed on the next page. When you
do this you will see "--Insert--" appear at the bottom of your screen. You
can now input text. When you want to exit the edit mode and return to
command mode, hit the escape key.

 You can use the arrow keys to move around the file in command
mode. In addition, there are a number of other navigation keys described
below.

 If you lose track of which mode you are in, hit the escape key twice.
You should hear your computer beep and you will know that you are in
command mode.

 In current Linux distributions, vi is usually a link to vim (vi improved).
This newer version of vi comes with a nice online tutorial. It is worth your
time. Try typing vimtutor at a command prompt.

 36

Vi command summary

Entering Edit Mode:

a = append text (after the cursor)
i = insert text (directly under the cursor)
o (the letter “oh”) = open a new line under the current line
O (capital “oh”) = open a new line above the current line

Command Mode:
 0 (zero) = Move cursor to beginning of current line.
 $ = Move cursor to the end of current line.
 x = delete the character under the cursor
 X = delete the character before the cursor
 dd = delete the entire line the cursor is on
 :w = save and continue editing
 :wq = save and quit (can use ZZ as well)
 :q! = quit and discard changes
 :w filename = save a copy to filename (save as)

 The best way to save yourself from a messed up edit is to hit <ESC>
followed by :q! That command will quit without saving changes.

 Another useful feature that can be used in command mode is the string
search. To search for a particular string in a file, make sure you are in
command mode and type

 /string

 Where string is your search target. After issuing the command, you
can move on to the next hit by typing "n".

 vi is an extremely powerful editor. There are a huge number of
commands and capabilities that are outside the scope of this guide. See man
vi for more details. Keep in mind there are chapters in books devoted to this
editor. There are even a couple of books devoted to vi alone.

 37

VI. Mounting File Systems on Disks

 There is a long list of file system types that can be accessed through
Linux. You do this by using the mount command. Linux has a special
directory used to mount file systems to the existing Linux directory tree.
This directory is called /mnt. It is here that you can dynamically attach new
file systems from external (or internal) storage devices that were not
mounted at boot time. Actually you can mount file systems anywhere (not
just on /mnt), but it's better for organization. Here is a brief overview.

 Any time you specify a mount point you must first make sure that that
directory exists. For example to mount a floppy under /mnt/floppy you must
be sure that /mnt/floppy exists. After all, suppose we want to have a
CDROM and a floppy mounted at the same time? They can't both be
mounted under /mnt (you would be trying to access 2 file systems through
one directory!). So we create directories for each device’s file system under
the parent directory /mnt. You decide what you want to call the directories,
but make them easy to remember. Keep in mind that until you learn to
manipulate the file /etc/fstab (covered later), only root can mount and
unmount file systems.

mkdir /mnt/floppy
mkdir /mnt/cdrom

 Newer distributions usually create these mount points for you, but you
might want to add others for yourself (mount points for subject disks or
images, etc. like /mnt/data or /mnt/analysis)

The Mount Command

The "mount" command uses the following syntax:

mount -t <filesystem> -o <options> <device> <mountpoint>

Example: Reading a DOS / Windows floppy

• Insert the floppy and type:

mount -t vfat /dev/fd0 /mnt/floppy

 38

• Now change to the newly mounted file system:

cd /mnt/floppy

• You should now be able to navigate the floppy as usual.
• When you are finished, EXIT OUT of the /mnt/floppy directory, and

unmount the file system with:

umount /mnt/floppy

• Note the proper command is umount, not unmount. This cleanly
unmounts the disk. DO NOT remove the disk OR SWAP the disk until it
is unmounted.

• If you get an error message that says the file system cannot be
unmounted because it is busy, then you most likely have a file open from
that directory, or are using that directory from another terminal. Check
all you xterms and virtual terminals and make sure you are no longer in
the mounted directory.

Example: Reading a CDROM
• Insert the CDROM and type:

mount -t iso9660 /dev/cdrom /mnt/cdrom

• Now change to the newly mounted file system:

cd /mnt/cdrom

• You should now be able to navigate the CD as usual.
• When you are finished, EXIT OUT of the /mnt/cdrom directory, and

unmount the file system with:

umount /mnt/cdrom

 If you want to see a list of file systems that are currently mounted, just
use the mount command without any arguments or parameters. It will list
the mount point and file system type of each device on system, along with
the mount options used (if any). This is actually read from a file called

 39

/proc/mounts, part of a virtual file system that keeps an up to date
“snapshot” of the current system configuration. Try the following two
commands:

mount
cat /proc/mounts

The ability to mount and unmount file systems is an important skill in

Linux. There are a large number of options that can be used with mount
(some we will cover later), and a number of ways the mounting can be done
easily and automatically. Refer to the mount info or man pages for more
information.

The file system table (/etc/fstab)
It might seem like "mount -t iso9660 /dev/cdrom /mnt/cdrom" is a

lot to type every time you want to mount a CD or a disk. One way around
this is to edit the file /etc/fstab. This file allows you to provide defaults for
your mountable devices, thereby shortening the commands required to
mount them. My /etc/fstab looks like this:

/dev/hda2 / ext2 defaults 1 1
/dev/hda5 /mnt/apps vfat user,noauto,defaults 0 0
/dev/hda6 /mnt/data vfat user,noauto,defaults 0 0
/dev/hda3 swap swap defaults 0 0
/dev/fd0 /mnt/floppy vfat user,noauto 0 0
/dev/hdc /mnt/cdrom iso9660 user,noauto,ro 0 0
/dev/sda4 /mnt/zip vfat user,noauto,defaults 0 0
none /proc proc defaults 0 0

The columns are:
<device> <mount point> <filesystem> <default options>

 With this /etc/fstab, I can mount a floppy or CD by simply typing:

mount /mnt/floppy
mount /mnt/cdrom

 40

 The above mount commands look incomplete. When not enough
information is given, the mount command will look to /etc/fstab to fill in the
blanks. If it finds the required info, it will go ahead with the mount.

Note the "user" entry in the options column for some devices. This
allows non-root users to mount the devices. Very useful. To find out more
about available options for /etc/fstab, enter info fstab at the command
prompt.

 Also keep in mind that default Linux installations will often create
/mnt/floppy and /mnt/cdrom for you already. After installing a new Linux
system, have a look at /etc/fstab to see what is available for you. If what you
need isn’t there, add it.

 41

VII. Linux and Forensics

Included Forensic Tools
Linux comes with a number of simple utilities that make imaging and

basic analysis of suspect disks and drives comparitively easy. These tools
include:

• dd -command used to copy from an input file or
device to an output file or device. Simple bitstream
imaging.

• sfdisk and fdisk -used to determine the disk
structure.

• grep -search files (or multiple files) for instances of
an expression or pattern.

• The loop device -allows you to mount an image
without having to rewrite the image to a disk.

• md5sum and sha1sum -create and store an MD5 or
SHA hash of a file or list of files (including devices).

• file -reads a file’s header information in an attempt to
ascertain its type, regardless of name or extension.

• xxd - command line hexdump tool. For viewing a file
in hex mode.

• ghex and khexedit -the Gnome and KDE (X
Window interfaces) hex editors. Both have primitive
search and byte selection capabilities.

Following is a very simple series of steps to allow you to perform an

easy practice analysis using the simple Linux tools mentioned above. All of
the commands can be further explored with “man command”. For
simplicity we are going to use a floppy from a DOS machine. Again, this is
just an introduction to the basic commands. These steps can be far more
powerful with some command line tweaking.

 42

Analysis organization
 Having already said that this is just an introduction, most of the work
you will do here can be applied to actual casework. The tools are standard
Linux tools, and although the example shown here is very simple, it can be
extended with some practice and a little (ok, a lot) of reading. The practice
floppy (in raw image format from a simple dd) for the following exercise is
available at:

 ftp://ftp.hq.nasa.gov/pub/ig/ccd/linuxintro/practical.floppy.dd

 Once you download the floppy image, put a floppy disk in your drive
and create the practice floppy with the following command (covered in
detail later):

 dd if=practical.floppy.dd of=/dev/fd0

 The output of various commands and the amount of searching we will
do here is limited by the scope of this example and the amount of data on a
floppy. When you actually do an analysis on larger media, you will want to
have it organized. Note that when you issue a command that results in an
output file, that file will end up in your current directory, unless you specify
a path for it in the command.

One way of organizing your data would be to create a directory in
your “home” directory for evidence and then a subdirectory for different
cases. Since we will be executing these commands as root, the home
directory is /root

 mkdir ~/evidence

 The tilde (~) in front of the directory name is shorthand for “home
directory”, so when I type ~/evidence, Linux interprets it
$HOME/evidence. If I am logged in as root, the directory will be created as
/root/evidence. Note that if you are already in your home directory, then
you don't need to type ~/. Simply using mkdir evidence will work just fine.
We are being explicit for instructional purposes. Directing all of our
analysis output to this directory will keep our output files separated from
everything else and maintain case organization.

 43

For the purposes of this exercise, we will be logged in as “root”. I
have mentioned already that this is generally a bad idea, and that you can
make a mess of your system if you are not careful. Many of the commands
we are utilizing here require root access (permissions on devices that you
might want to access should not be changed to allow otherwise, and doing
so would be far more complex than you think). So the output files that we
create and the images we make will be found under /root/evidence/

An additional step you might want to take is to create a special mount

point for all physical subject disk analysis (not that we normally mount
subject disks…). This is another way of separating common system use
with evidence processing.

 mkdir /mnt/analysis

Determining the structure of the disk
There are two simple tools available for determining the structure of a

disk attached to your system. The first, fdisk, we discussed eariler using the
-l option. Replace the “x” with the letter of the drive that corresponds to the
subject drive.

fdisk –l /dev/hdx
Disk /dev/hda: 255 heads, 63 sectors, 1582 cylinders
Units = cylinders of 16065 * 512 bytes
 Device Boot Start End Blocks Id System
/dev/hda1 1 255 2048256 b Win95 FAT32
/dev/hda2 * 256 638 3076447+ 83 Linux
/dev/hda3 639 649 88357+ 82 Linux swap
/dev/hda4 650 1582 7494322+ f Win95 Ext'd (LBA)
/dev/hda5 650 1453 6458098+ b Win95 FAT32
/dev/hda6 1454 1582 1036161 b Win95 FAT

We can redirect the output of this command to a file for later use by

issuing the command as:
fdisk –l /dev/hdx > fdisk.disk1

 A couple of things to note here: The name of the output file
(fdisk.disk1) is completely arbitrary. There are no rules for extensions.
Name the file anything you want. I would suggest you stick to a convention

 44

and make it descriptive. Also note that since we did not define an explicit
path for the file name, fdisk.disk1 will be created in our current directory (for
instance, /root/evidence/).

Also note that you can expect to see strange output if you use fdisk on

a floppy disk. Be aware of that if you attempt fdisk on the practice floppy.
Try it on your harddrive instead to see sample output. Don’t use fdisk on
the practice floppy. The output won’t make sense.

Creating a forensic image of the suspect disk
 Make an image of the practice disk. This is your standard forensic
image of a suspect disk. Execute the command from within the
/root/evidence/ directory:

 dd if=/dev/fd0 of=image.disk1 bs=512

This takes your floppy device (/dev/fd0) as the input file (if) and writes the
output file (of) called image.disk1 in the current directory (/root/evidence/).
The bs option specifies the block size. This is really not needed for most
block devices (hard drives, etc.) as the Linux kernel handles the actual block
size. It’s added here for illustration

For the sake of safety and practice, change the read-write permissions

of your image to read-only.

 chmod 444 image.disk1

 The 444 gives all users read-only access. If you are real picky, you
could use 400. Note that the owner of the file is the user that created it.

Now that you have created an image file, you can restore the image to

another disk for analysis and viewing. Put another (blank) floppy in and
type:

dd if=image.disk1 of=/dev/fd0 bs=512

 This is the same as the first dd command, only in reverse. Now you
are taking your image (the input file “if”) and writing it to another disk (the
output file “of”) to be used as a backup or as a working copy for the actual
analysis.

 45

 Note that using dd creates an exact duplicate of the physical device.
This includes all the file slack and unallocated space. We are not simply
copying the logical file structure. Unlike many other forensic imaging tools,
dd does not fill the image with any proprietary data or information. It is a
simple bit stream copy from start to end. This (in my ever-so-humble
opinion) has a number of advantages, as we will see later.

Mounting a restored image
 Mount the restored (cloned) working copy and view the contents.
Remember, we are assuming this is a DOS formatted disk from a Win 98/95
machine.

 mount -t vfat -o ro,noexec /dev/fd0 /mnt/analysis

 This will mount your working copy (the new floppy you created from
the forensic image) on “/mnt/analysis”. The “–o ro,noexec” specifies the
options ro (read-only) and noexec (prevents the execution of binaries from
the mount point) in order to protect the disk from you, and your system (and
mountpoint) from the contents of the disk. There are other useful mount
options as well, such as noatime. See the man page for more details.

Now cd to the mount point (/mnt/analysis) and browse the contents.
Be sure to unmount the disk when you finish.

 umount /mnt/analysis

Mounting the image using the loopback device

Another way to view the contents of the image without having to

restore it to another disk is to mount using the loop interface. Basically, this
allows you to “mount” a file system within an image file (instead of a disk)
to a mount point and browse the contents. Your Linux kernel must have loop
either compiled as a module or compiled into the kernel for this to work.

We use the same mount command and the same options, but this time

we include the option “loop” to indicate that we want to use the loop device
to mount the file system within the image file, and we specify a disk
(partition) image rather than a disk device. Change to the directory where
you created the image and type:

 46

mount -t vfat -o ro,noexec,loop image.disk1 /mnt/analysis

 Now you can change to /mnt/analysis and browse the image as if it
were a mounted disk! Use the mount command by itself to double check
the mounted options. When you are finished browsing, unmount the image
file.

 umount /mnt/analysis

File Hash
One important step in any analysis is verifying the integrity of your

data both before after the analysis is complete. You can get a hash (CRC,
MD5, or SHA) of each file in a number of different ways. We will use the
SHA hash. SHA is a hash signature generator that supplies a 160-bit
“fingerprint” of a file or disk. It is not feasible for someone to
computationally recreate a file based on the SHA hash. This means that
matching SHA signatures mean identical files.
 We can get an SHA sum of a disk by changing to our evidence
directory (i.e. /root/evidence) and doing (note that the following commands
can be replaced with md5sum if you prefer to use MD5 sums):

 sha1sum /dev/fd0
or
 sha1sum /dev/fd0 > SHA.disk1

The redirection in the second command allows us to store the
signature in a file and use it for verification later on. To get a hash of a raw
disk (/dev/hda, /dev/fd0, etc.) the disk does NOT have to be mounted. We
are hashing the device (the disk) not the file system. As we discussed
earlier, Linux treats all objects, including physical disks, as files. So
whether you are hashing a file of a hard drive, the command is the same.

We can get a hash of each file on the disk using the find command

and an option that allows us to execute a command on each file found. We
can get a very useful list of SHA hashes for every file on a disk (once it is
mounted, as in the loop mount command on the previous page) by changing
to the /mnt/analysis directory:

 47

 mount -t vfat -o ro,noexec,loop image.disk1 /mnt/analysis

cd /mnt/analysis

 and issuing the command:

 find . -type f -exec sha1sum {} \; > /root/evidence/SHA.filelist

 This command says “find, starting in the current directory (signified
by the “.”), any regular file (-type f) and execute (-exec) the command
sha1sum on all files found ({}). Redirect the output to SHA.filelist in the
/root/evidence directory (where we are storing all of our evidence files). The
“\;” is an escape sequence that ends the –exec command.

You can also use Linux to do your verification for you. To verify that

nothing has been changed on the original floppy, you can use the -c option
with sha1sum. If the disk was not altered, the command will return “ok”.
Make sure the floppy is in the drive and type:

sha1sum -c /root/evidence/SHA.disk1

 If the SHA hashes match from the floppy and the original SHA output
file, then the command will return “OK” for /dev/fd0. The same can be done
with the list of file SHAs. Mount the floppy on /mnt/analysis, change to that
directory and issue the command:

 sha1sum -c /root/evidence/SHA.filelist

 Again, the SHA hashes in the file will be compared with SHA sums
taken from the floppy (at the mount point). If anything has changed, the
program will give a “failed” message. Unchanged files will be marked
“OK”.

The analysis
You can now view the contents of the read-only mounted or restored

disk or loop-mounted image. If you are running the X window system, then
you can use your favorite file browser to look through the disk. In most (if
not all) cases, you will find the command line more useful and powerful in
order to allow file redirection and permanent record of your analysis. We
will use the command line here.

 48

We are also assuming that you are issuing the following commands
from the proper mount point (/mnt/analysis/). If you want to save a copy of
each command’s output, be sure to direct the output file to your evidence
directory (/root/evidence/)

Navigate through the directories and see what you can find. Use the ls

command to view the contents of the disk. The command in the following
form might be useful:

ls –al

 This will show all the hidden files (-a), give the list in long format to
identify permission, date, etc. (-l). You can also use the –R option to list
recursively through directories. You might want to pipe that through less.

ls –alR | less

Making a list of all files
 Get creative. Take the above command and redirect the output to
your evidence directory. With that you will have a list of all the files and
their owners and permissions on the suspect disk. This is a very important
command. Check the man page for various uses and options. For example,
you could use the –i option to include the inode in the list, the –u option can
be used so that the output will include and sort by access time (when used
with the –t option).

 ls –laiRtu > /root/evidence/file.list

 You could also get a list of the files, one per line, using the find
command and redirecting the output to another list file:

 find . -type f -print > /root/evidence/filelist.list.2

 Have a look at the above commands, and compare their output.
Which do you like better? Remember the syntax assumes you are issuing
the command from the /mnt/analysis directory (use pwd if you don’t know
where you are).

 Now use the grep command on either of the file lists for whatever
strings or extensions you want to look for.

 49

 grep -i jpg filelist.list

 This command looks for the pattern “jpg” in the list of files, using the
filename extension to alert us to a JPEG file.

Making a list of file types

What if you are looking for JPEG’s but the name of the file has been

changed, or the extension is wrong? You can also run the command file on
each file and see what it might contain.

 file filename

 The file command compares each file’s header (the first few bytes of a
raw file) with the contents of the “magic” file (usually found in
/usr/share/magic). It then outputs a description of the file.

 If there are a large number of files without extensions, or where the
extensions have changed, you might want to run the file command on all the
files on a disk (or in a directory, etc.). Remember our use of the find
command’s -exec option with sha1sum? Let’s do the same thing with file:

find . -type f -exec file {} \; > /root/evidence/filetype.list

View the list with the more command, and if you are looking for
images in particular, then use grep to specify that:

cat /root/evidence/filetype.list | grep image

This command would stream the contents of our filetype.list file using

the cat command and pipe the output through grep, looking for instances of
the string “image”.

Viewing files
For text files and data files, you might want to use cat, more or less to

view the contents.

 cat filename
 more filename

 50

 less filename

 Be aware that if the output is not standard text, then you might corrupt
the terminal output (type “reset” at the prompt and it should clear up). It is
best to run these commands in a terminal window in X so that you can
simply close out a corrupted terminal and start another. Using the file
command will give you a good idea of which files will be viewable.

Perhaps a better alternative for viewing unknown files would be to use

the strings command. This command can be used to parse regular ASCII
text out of any file. It’s good for formatted documents (MS Word or Star
Office), data files (Excel, etc.) and even binaries (i.e. unidentified
executables) which might have interesting text strings hidden in them. It
might be best to pipe the output through less.

strings filename | less

Have a look at the contents of the practice disk on /mnt/analysis.

There is a file called arp.exe. What does this file do? We can’t execute it,
and from using the file command we know that it’s an i386 executable. Run
the following command (again, assuming you are in the /mnt/analysis
directory) and scroll through the output. Do you find anything of interest
(hint: like a usage message)?

strings arp.exe | less

If you are currently running the X window system, you can use any of

the graphics tools that come standard with whichever Linux distribution you
are using. gqview is one graphics tool for the Gnome desktop that will
display thumbnails of all the recognized graphic files in a directory.
Experiment a little. konqueror from the KDE desktop has a feature that
will create a very nice html image gallery for you from all images in a
directory. There are g-scripts that will do the same for the Nautilus file
manager under Gnome.

Once you are finished exploring, be sure to unmount the floppy (or
loop mounted disk image). Again, make sure you are not anywhere in the
mount point when you try to unmount, or you will get the “busy” error.

 umount /mnt/analysis

 51

Searching unallocated and slack space for text
 Now let’s go back to the original image. The restored disk (or loop
mounted disk image) allowed you to check all the files and directories
(logical view). What about unallocated and slack space (physical view)?
We will now analyze the image itself, since it was a byte for byte copy and
includes data in the unallocated areas of the disk, as well as file slack space.

Let’s assume that we have seized this disk from a former employee of
a large corporation. The would-be cracker sent a letter to the corporation
threatening to unleash a virus in their network. The suspect denies sending
the letter. This is a simple matter of finding the text from a deleted file
(unallocated space).

First, change back to the directory in which you created the image,

whether it was the root’s home directory, or a special one you created.

 cd /root/evidence

 Now we will use the grep command to search the image for any
instance of an expression or pattern. We will use a number of options to
make the output of grep more useful. The syntax of grep is normally:

 grep –options <pattern> <search_range>

 The first thing we will do is create a list of keywords to search for.
It’s rare we ever want to search evidence for a single keyword, after all.
For our example, lets use “ransom”, “$50,000” (the ransom amount), and
“unleash a virus”. These are some keywords and a phrase that we have
decided to use from the original letter received by the corporation. Make the
list of keywords (using vi) and save it as /root/evidence/searchlist.txt.
Ensure that each string you want to search for is on a different line.

$50,000
ransom
unleash a virus

Make sure there are NO BLANK LINES IN THE LIST OR AT THE

END OF THE LIST!! Now we run the grep command on our image:

 52

grep –aibf searchlist.txt image.disk1 > hits.txt

 Looking at the grep command we see that we are asking grep to use
the list we created in “searchlist.txt” for the patterns we are looking for. This
is specified with the “-f listfile” option. We are telling grep to search
image.disk1 for these patterns, and we are redirecting the output to a file
called hits.txt, so we can record the output and view them at our leisure. The
–a option tells grep to process the file as if it were text, even if it’s binary.
The option -i tells grep to ignore upper and lower case. And the -b option
tells grep to give us the byte offset of each hit so we can find the line in xxd
or one of the graphical hex editors, like GHex.

 Once you run the command above, you should have a new file in your
current directory called hits.txt. View this file with less or more or any text
viewer. Keep in mind that strings might be best for the job. Again, if you
use more or less, you run the risk of corrupting your terminal if there are
non-ASCII characters. We will simply use cat to stream the entire contents
of the file to the standard output. The file hits.txt should give you a list of
lines that contain the words in your searchlist.txt file. In front of each line is
a number that represents the byte offset for that “hit” in the image file.

cat hits.txt

75441:you and your entire business ransom.
75500:I have had enough of your mindless corporate piracy and will no
longer stand for it. (…)
75767:Don't try anything, and dont contact the cops. If you do, I will
unleash a virus that will bring down your whole network and destroy your
consumer's confidence.

In keeping with our command line philosophy, we will use xxd to

display the data found at each byte offset. xxd is a command line hexdump
tool, useful for examining files. Do this for each offset in the list of hits.
This should yield some interesting results.

xxd -s offset image.disk1 | less

 53

If you want to cheat a little, and use a GUI, try GHex. Find it on the

KDE or Gnome menus, or simply type ghex & in a terminal window. It is a
standard hex editor. Open the image file, and click on <Edit> and then
<Goto Byte>. Type in the byte offset given in your hits.txt file and it should
take you to that byte in the hex screen. The ASCII equivalent is displayed
on the right.

 54

VIII. Common Forensic Issues

Handling large disks
 The example used in this text utilizes a file system on a floppy disk.
What happens when you are dealing with larger hard disks? When you
create an image of a disk drive with the dd command there are a number of
components to the image. These components can include a boot sector,
partition table, and the various partitions (if defined).

When you attempt to mount a larger image with the loop device, you
find that the mount command is unable to find the file system on the disk.
This is because mount does not know how to “recognize” the partition table.
The easy way around this (although it is not very efficient for large disks)
would be to create separate images for each disk partition that you want to
analyze. For a simple hard drive with a single large partition, you would
create two images.

Assuming your suspect disk is attached as the master device on the

secondary IDE channel:

 dd if=/dev/hdc of=image.disk bs=4096 (gets the entire disk)
 dd if=/dev/hdc1 of=image.part1 bs=4096 (gets the first partition)

 The first command gets you a full image of the entire disk for backup
purposes, including the boot record and partition table. The second
command gets you the partition. The resulting image from the second
command can be mounted via the loop device.

Note that although both of the above disks will contain the same file

system with the same data, the sha1sums will obviously not match.

One method for handling larger disks (mounting the image with the
loop device) is to send the mount command a message to skip trying to
mount the first 63 sectors of the image. These sectors are used to contain
information (like the MBR) that is not part of a normal data partition. We
know that each sector is 512 bytes, and that there are 63 of them. This gives
us an offset of 32256 bytes from the start of our image to the first partition
we want to mount. This is then passed to the mount command as an option:

mount –t vfat –o ro,noexec,loop,offset=32256 image.disk /mnt/analysis

 55

This effectively “jumps over” the first 63 sectors of the image and

goes straight to the “boot sector” of the first partition, allowing the mount
command to work properly.

You could also use NASA’s enhanced loopback driver, which we will
discuss a little later.

When you are dealing with larger disks (over 2GB), you must also

concern yourself with the size of your image files. If your Linux distribution
relies on the 2.2.x kernel then you will encounter a file size limit of 2GB (on
x86 systems). The Linux 2.4.x kernel solves this problem. You can either
compile the 2.4.x kernel on your current system, or use a distribution that
includes the 2.4.x kernel in its default installation. Just about any
distribution from anytime this century (!) will have the 2.4 kernel.

Now that we know about the issues surrounding creating large images

from whole disks, what do we do if we run into an error? Suppose you are
creating a disk image with dd and the command exits halfway through the
process with a read error? We can instruct dd to attempt to read past the
errors using the conv=noerror option. In basic terms, this is telling the dd
command to ignore the errors that it finds, and attempt to read past them.
When we specify the noerror option it is a good idea to include the sync
option along with it. This will “pad” the dd output wherever errors are
found and ensure that the output will be “synchronized” with the original
disk. This may allow file system access and file recovery where errors are
not fatal. The command will look something like:

dd if=/dev/hdx of=image.disk1 conv=noerror,sync

In addition to the structure of the images and the issues of image sizes,

we also have to be concerned with memory usage and our tools. You might
find that grep, when used as illustrated in our floppy analysis example,
might not work as expected with larger images and could exit with an error
similar to:

grep: memory exhausted

The most apparent cause for this is that grep does its searches line by
line. When you are “grepping” a large disk image, you might find that you

 56

have a huge number of bytes to read through before grep comes across a
newline character. What if grep had to read 200MB of data before coming
across a newline? It would “exhaust” itself (the input buffer fills up).

What if we could force-feed grep some newlines? In our example

analysis we are “grepping” for text. We are not concerned with non-text
characters at all. If we could take the input stream to grep and change the
non-text characters to newlines, grep would have no problem. Note that
changing the input stream to grep does not change the image itself. Also,
remember that we are still looking for a byte offset. Luckily, the character
sizes remain the same, and so the offset does not change as we feed newlines
into the stream (simply replacing one “character” with another).

Let’s say we want to take all of the control characters streaming into

grep from the disk image and change them to newlines. We can use the
translate command, tr, to accomplish this. Check out man tr for more
information about this powerful command:

tr ‘[:cntrl:]’ ‘\n’ < image.disk1 | grep -abif searchlist.txt > hits.txt

This command would read: “Translate all the characters contained in
the set of control characters ([:cntrl:]) to newlines (\n). Take the input to tr
from image.disk1 and pipe the output to grep, sending the results to hits.txt.
This effectivley changes the stream before it gets to grep.

This is only one of many possible problems you could come across.
My point here is that when issues such as these arise, you need to be familiar
enough with the tools Linux provides to be able to understand why such
errors might have been produced, and how you can get around them.
Remember, the shell tools and the GNU software that accompany a Linux
distribution are extrememly powerful, and are capable of tackling nearly any
task. Where the standard shell fails, you might look at perl or python as
options. These subjects are outside of the scope of the current presentation,
but are introduced as fodder for further experimentation.

Preparing a disk for the suspect image
 One common practice in forensic disk analysis is to “wipe” a disk
prior to restoring a forensic image to it. This ensures that any data found on
the restored disk is from the image and not from “residual” data. That is,
data left behind from a previous case or image.

 57

 We can use a special device as a source of zeros. This can be used to
create empty files and wipe portions of disks. You can write zeros to an
entire disk using the following command:

 dd if=/dev/zero of=/dev/hdx bs=4096

 This starts at the beginning of the drive and writes zeros in every
sector in 4096 byte chunks. Specifying larger block sizes can speed the
writing process. Experiment with different block sizes and see what effect it
has on the writing speed (i.e. 32k, 64k, etc.). I’ve wiped 60GB disks in
under an hour on a fast IDE controller with the proper drive parameters.
Specific drive parameters can be set using the hdparm command. Check
hdparm’s man page for available options. For instance, setting dma on a
drive can dramatically speed things up.

 So how do we verify that the write (of zero’s) was a success? You
could check random sectors with a hex editor, but that’s not realistic for a
large drive. One of the best methods would be to use the xxd command
(command line hexdump) with the “autoskip” option (works if a drive is
wiped with 0x00). The output of this command on a zero’d drive would give
just three lines. The first line, starting at offset zero with a row of zeros in
the data area, followed by an asterisk (*) to indicate identical lines, and
finally the last line, with the final offset followed by the remaining zeros in
the data area. Here’s and example of the command on a zero’d drive
(floppy) and its output.

xxd -a /dev/fd0
0000000: 0000 0000 0000 0000 0000 0000 0000 0000
*
0167ff0: 0000 0000 0000 0000 0000 0000 0000 0000

 58

IX. Advanced (Beginner) Forensics

The following sections are more advanced and detailed. New tools
are introduced to help round out some of your knowledge and provide a
more solid footing on the capabilities of the Linux command line. The
topics are still at the beginner level, but you should be at least somewhat
comfortable with the command line before tackling the exercises. Although
I’ve included the commands and much of the output for those who are
reading this without the benefit of a Linux box nearby, it is important that
you follow along on your own system as we go through the practical
exercises. Typing at the keyboard and experimentation is the only way to
learn.

The Command Line on Steroids

 Let’s dig a little deeper into the command line. Often there are
arguments made about the usefulness of the command line interface (CLI)
versus a GUI tool for analysis. I would argue that in the case of large sets of
regimented data, the CLI can sometimes be faster and more flexible than
many GUI tools available today.

 As an example, we will look at a set of log files from a single Unix
system. We are not going to analyze them for any sort of smoking gun. The
point here is to illustrate the ability of the CLI to organize and parse through
data by using pipes to string a series of commands together, obtaining the
desired output. Follow along with the example, and keep in mind that to get
anywhere near proficient with this will require a great deal of reading and
practice. The payoff is enormous.

 Create a directory called “logs” and download the file logs.tar.gz into
that directory:

ftp://ftp.hq.nasa.gov/pub/ig/ccd/linuxintro/logs.tar.gz

 As always, have a look at the contents of the archive before
haphazardly writing the contents to your drive:

 59

tar tzvf logs.tar.gz
-rw------- root/root 8296 2003-10-29 16:14:49 messages
-rw------- root/root 8302 2003-10-29 16:17:38 messages.1
-rw------- root/root 8293 2003-10-29 16:19:32 messages.2
-rw------- root/root 4694 2003-10-29 16:23:18 messages.3
-rw------- root/root 1215 2003-10-29 16:23:33 messages.4

 The archive contains 5 log files from a Unix system. The messages
logs contain entries from a variety of sources, including the kernel and other
applications. The numbered files result from log rotation. As the logs are
filled, they are rotated and eventually deleted. On most Unix systems, the
logs are found in /var/log/ or /var/adm.

Untar the file:

tar xzvf logs.tar.gz

Let’s have a look at one log entry:

cat messages | head -1
Nov 17 04:02:14 localhost123 syslogd 1.4.1: restart.

Each line in the log files begin with a date and time stamp. Next

comes the hostname followed by the name of the application that generated
the log message. Finally, the actual message is printed.

Let’s assume these logs are from a victim system, and we want to

analyze them and parse out the useful information. We are not going to
worry about what we are actually seeing here, our object is to understand
how to boil the information down to something useful.

First of all, rather than parsing each file individually, let’s try and

analyze all the logs at one time. They are all in the same format, and
essentially they comprise one large log. We can use the cat command to add
all the files together and send them to standard output. If we work on that
data stream, then we are essentially making one large log out of all five logs.
Can you see a potential problem with this?

cat messages* | less

 60

If you look at the output, you will see that the dates ascend and then
jump to an earlier date and then start to ascend again. This is because the
later log entries are added to the bottom of each file, so as the files are added
together, the dates appear to be out of order. What we really want to do is
stream each file backwards so that they get added together with the most
recent date in each file at the top instead of at the bottom. In this way, when
the files are added together they are in order. In order to accomplish this, we
use tac (yes, that’s cat backwards).

tac messages* | less

Beautiful. The dates are now in order. We can now work on the

stream of log entries as if they were one large (in order) file.

We will introduce a new command, awk, to help us view specific

fields from the log entries. In this case, the dates. awk is an extremely
powerful command. The version most often found on Linux systems is
gawk (GNU awk). While we are going to use it as a stand alone command,
awk is actually a programming language on its own, and can be used to
write scripts for organizing data. Our concentration will be centered on
awk’s “print” function. See man awk for more details.

Sets of repetitive data can often be divided into columns or “fields”,

depending on the structure of the file. In this case, the fields in the log files
are separated by simple white space (awk’s default field separator). The
date is comprised of the first two fields (month and day).

tac messages * | awk ‘{print $1 “ “ $2}’ | less

Feb 8
Feb 8
Feb 8
…

This command will stream all the log files (each one from bottom to

top) and send the output to awk which will print the first field (month - $1),
followed by a space (“ “), followed by the second field (day - $2). This
shows the month and day for every entry. Suppose I just want to see one of
each date when an entry was made. I don’t need to see repeating dates. I
ask to see one of each unique line of output with uniq:

 61

tac messages* | awk ‘{print $1 “ “ $2}’ | uniq | less

Feb 8
Nov 22
Nov 21
Nov 20
…

This removes repeated dates, and shows me just those dates with log

activity. If a particular date is of interest, I can grep the logs for that
particular date (note there are 2 spaces between “Nov” and “4”, one space
will not work):

tac messages* | grep “Nov 4”

Nov 4 17:41:27 localhost123 sshd(pam_unix)[27630]: session closed for
user root
Nov 4 17:41:27 localhost123 sshd[27630]: Received disconnect from
1xx.183.221.214: 11: Disconnect requested by Windows SSH Client.
…

Of course, we have to keep in mind that this would give us any lines
where the string “Nov 4” resided, not just in the date field. To be more
explicit, we could say that we only want lines that start with “Nov 4”, using
the “^”:

 tac messages* | grep “^Nov 4”

 Also, if we don’t know that there are two spaces between “Nov” and
“4”, we can tell grep to look for any number of spaces between the two:

 tac messages* | grep “^Nov[]*4”

 The above grep expression translates to “Lines starting (^) with the
string “Nov” followed by zero or more (*) of the preceding characters
([/space/]) followed by a 4”. Obviously, this is a complex issue. Knowing
how to use regular expression will give you huge flexibility in sorting
through and organizing large sets of data.

 62

 As we look through the log files, we may come across entries that
appear suspect. Perhaps we need to gather all the entries that we see
containing the string “Did not receive identification string from <IP>” for
further analysis.

 tac messages* | grep “identification string” | less

Nov 17 19:26:43 localhost123 sshd[2019]: Did not receive identification
string from 200.92.72.129
Nov 18 18:55:06 localhost123 sshd[11204]: Did not receive identification
string from 62.66.248.243
…

 Now we just want the date (fields 1 and 2), the time (field 3) and the
remote IP address that generated the log entry. The IP address is the last
field. Rather than count each word in the entry to get to the field number of
the IP, we can simply use the variable “$NF”, which means “number of
fields”. Since the IP is the last field, its field number is equal to the number
of fields:

tac messages* | grep “identification string” |
awk ‘{print $1” “$2” “$3” “$NF}’ | less

Nov 17 19:26:43 200.92.72.129
Nov 18 18:55:06 62.66.248.243
Nov 20 14:13:11 200.83.114.131
…

 We can add some tabs (“\t”) in place of spaces to make it more
readable:

tac messages* | grep “identification string” |
awk ‘{print $1” “$2”\t“$3”\t“$NF}’ | less

Nov 17 19:26:43 200.92.72.129
Nov 18 18:55:06 62.66.248.243
Nov 20 14:13:11 200.83.114.131

 …

 63

 This can all be redirected to an analysis log or text file for easy
addition to a report (note that “> report.txt” creates the report file, “>>
report.txt” appends to it):

echo “Localhost123: Log entries from /var/log/messages” > report.txt

echo “\”Did not receive identification string\”:” >> report.txt

tac messages* | grep “identification string” |

awk ‘{print $1” “$2”\t“$3”\t“$NF}’ >> report.txt

 We can also get a sorted (sort) list of the unique (-u) IP addresses
involved in the same way:

echo “Unique IP addresses:” >> report.txt

tac messages* | grep “identification string” |

awk ‘{print $NF}’ | sort -u >> report.txt

less report.txt

 The resulting list of IP addresses can also be fed to a script that does
nslookup or whois database queries.

 As with all the exercises in this document, we have just sampled the
abilities of the Linux command line. It all seems somewhat convoluted to
the beginner. After some practice and experience with different sets of data,
you will find that you can glance at a file and say “I want that information”,
and be able to write a quick piped command to get what you want in a
readable format in a matter of seconds. As with all language skills, the
Linux command line “language” is perishable. Keep a good reference handy
and remember that you might have to look up syntax a few times before it
becomes second nature.

 64

Fun with DD

We’ve already done some simple imaging and wiping using dd, let’s
explore some other uses for this flexible tool. dd is sort of like a little
forensic Swiss army knife (talk about over-used clichés!). It has lots of
applications, limited only by your imagination.

Splitting files and images

One function we might find useful would be the ability to split images

up into usable chunks, either for archiving or for use in another program.
We will first discuss using split on its own, then in conjunction with dd for
“on the fly” splitting.

For example, you might have a 10GB image that you want to split into

640MB parts so they can be written to CD-R media. Or, if you use a
program such as Ilook Investigator and need files no larger than 2GB (for a
fat32 partition), you might want to split the image into 2GB pieces. For this
we use the split command.

 split normally works on lines of input (i.e. from a text file). But if we
use the –b option, we force split to treat the file as binary input and lines are
ignored. We can specify the size of the files we want along with the prefix
we want for the output files. The command looks like:

 split –b XXm <file to be split> <prefix of output files>

 where XX is the size of the resulting files. For example, if we have a
6GB image called image.disk1.dd, we can split it into 2GB files using the
following command:

 split –b 2000m image.disk1.dd image.split.

 This would result in 3 files (2GB in size) each named with the prefix
“image.split.” as specified in the command, followed by “aa”, “ab”, “ac”,
and so on:

 65

 image.split.aa
 image.split.ab
 image.split.ac

 The process can be reversed. If we want to reassemble the image
from the split parts (from CD-R, etc.), we can use the cat command and
redirect the output to a new file. Remember cat simply streams the specified
files to standard output. If you redirect this output, the files are assembled
into one.

 cat image.split.aa image.split.ab image.split.ac > image.new
or
 cat image.split.a* > image.new

Another way of accomplishing this would be to split the image as we
create it (i.e. from a dd command). This is essentially the “on the fly”
splitting we mentioned earlier. We do this by piping the output of the dd
command straight to split.

 dd if=/dev/hdx | split –b 2000m – image.split.

In this case, instead of giving the name of the file to be split in the
split command, we give a simple “-“. The single dash is a descriptor that
means “standard input”. In other words, the command is taking its input
from the data pipe provided by the standard output of dd.

Once we have the image, the same technique using cat will allow us to
reassemble it for hashing or analysis.

For practice, let’s take the practical exercise floppy disk we used earlier and
try this method on that disk, splitting it into 360k pieces:

sha1sum /dev/fd0

f5ee9cf56f23e5f5773e2a4854360404a62015cf /dev/fd0

dd if=/dev/fd0 | split –b 360k – floppy.split.

2880+0 records in
2880+0 records out

- remember, the “records” are 512 byte blocks (times 2880 =
1.44Mb)

 66

ls –lh
-rw-r--r-- 1 root root 360k Aug 14 08:13 floppy.split.aa
-rw-r--r-- 1 root root 360k Aug 14 08:13 floppy.split.ab
-rw-r--r-- 1 root root 360k Aug 14 08:13 floppy.split.ac
-rw-r--r-- 1 root root 360k Aug 14 08:13 floppy.split.ad

cat floppy.split.a* | sha1sum

f5ee9cf56f23e5f5773e2a4854360404a62015cf -
(The out put of this command shows a “-“ in place of the
filename. This represents the fact that the hash was calculated
from “standard input” to sha1sum, not a file or device)

cat floppy.split.a* > new.floppy.image
ls -lh

-rw-r--r-- 1 root root 360k Aug 14 08:13 floppy.split.aa
-rw-r--r-- 1 root root 360k Aug 14 08:13 floppy.split.ab
-rw-r--r-- 1 root root 360k Aug 14 08:13 floppy.split.ac
-rw-r--r-- 1 root root 360k Aug 14 08:13 floppy.split.ad
-rw-r--r-- 1 root root 1.4M Aug 14 08:14 new.floppy.image

sha1sum new.floppy.image
f5ee9cf56f23e5f5773e2a4854360404a62015cf new.floppy.image

Looking at the output of the above commands, we see that all the sha1sum’s
match. We find the same hash for the disk, for the split images “cat-ed”
together, and for the newly reassembled image.

Data Carving with dd
In this next example, we will use dd to carve a JPEG image from a

chunk of raw data. By itself, this is not a real useful exercise. There are lots
of tools out there that will “carve” files from forensic images, including a
simple cut and paste from a hex editor. However, the purpose of this
exercise is to help you become more familiar with dd. In addition, you will
get a chance to use a number of other tools in preparation for the “carving”.
This will help familiarize you further with the Linux toolbox. First you will
need to download the raw data chunk from:

ftp://ftp.hq.nasa.gov/pub/ig/ccd/linuxintro/image_carve.raw

 67

Have a brief look at the file image_carve.raw with your wonderful
command line hexdump tool, xxd:

xxd image_carve.raw | less

 It’s really just a file full of random characters. Somewhere inside
there is a standard JPEG image. Let’s go through the steps we need to take
to “recover” the picture file using dd and other Linux tools. We are going to
stick with command line tools available in most default installations.

 First we need a plan. How would we go about recovering the file?
What are the things we need to know to get the image (picture) out, and only
the image? Imagine dd as a pair of scissors. We need to know where to put
the scissors to start cutting, and we need to know where to stop cutting.
Finding the start of the JPEG and the end of the JPEG can tell us this. Once
we know where we will start and stop, we can calculate the size of the JPEG.
We can then tell dd where to start cutting, and how much to cut. The output
file will be our JPEG image. Easy, right? So here’s our plan, and the tools
we’ll use:

 1) Find the start of the JPEG (xxd and grep)
 2) Find the end of the JPEG (xxd and grep)
 3) Calculate the size of the JPEG (in bytes using bc)
 4) Cut from the start to the end and output to a file (using dd)

This exercise starts with the assumption that we are familiar with
standard file headers. Since we will be searching for a standard JPEG image
within the data chunk, we will start with the stipulation that the JPEG header
begins with hex ffd8 with a six-byte offset to the string “JFIF”. The end of
the standard JPEG is marked by hex ffd9.

Let’s go ahead with step 1: Using xxd, we pipe the output of our
image_carve.raw file to grep and look for the start of the JPEG4:

xxd image_carve.raw | grep ffd8
00052a0: b4f1 559c ffd8 ffe0 0010 4a46 4946 0001 ..U…….JFIF..

4 The perceptive among you will notice that this is a “perfect world” situation. There are a number of
variables that can make this operation more difficult. The grep command can be adjusted for many
situations using a complex regular expression (outside the scope of this document).

 68

As the output shows, we’ve found the pattern “ffd8” near the string
“JFIF”. The start of a standard JPEG file header has been found. The offset
(in hex) for the beginning of this line of xxd output is 00052a0. Now we
can calculate the byte offset in decimal. For this we will use the bc
command. bc is a command line “calculator”, useful for conversions and
calculations. It can be used either interactively or take piped input. In this
case we will echo the hex offset to bc, first telling it that the value is in base
16. bc will return the decimal value.

echo "ibase=16; 00052A0" | bc
21152

 It’s important that you use uppercase letters in the hex value. Note
that this is NOT the start of the JPEG, just the start of the line in xxd’s
output. The “ffd8” string is actually located another 4 bytes farther into that
line of output. So we add 4 to the start of the line. Our offset is now 21156.
We have found and calculated the start of the JPEG image in our data chunk.

 Now it’s time to find the end of the file.

Since we already know where the JPEG starts, we will start our search
for the end of the file from that point. Again using xxd and grep we search
for the string:

xxd –s 21156 image_carve.raw | grep ffd9
0006c74: ffd9 d175 650b ce68 4543 0bf5 6705 a73c …ue..hEC..g..<

The –s 21156 specifies where to start searching (since we know this is
the front of the JPEG, there’s no reason to search before it and we eliminate
false hits from that region). The output shows the first “ffd9” at hex offset
0006c74. Let’s convert that to decimal:

echo "ibase=16; 0006C74" | bc
27764

Because that is the offset for the start of the line, we need to add 2 to

the value to include the ffd9 (giving us 27766). Now that we know the start
and the end of the file, we can calculate the size:

 69

echo "27766 - 21156" | bc
6610

We now know the file is 6610 bytes in size, and it starts at byte offset

21156. The carving is the easy part! We will use dd with three options:

skip= how far into the data chuck we begin “cutting”.
bs= (block size) the number of bytes we include as a “block”.
count = the number of blocks we will be “cutting”.

The input file for the dd command is image_carve.raw. Obviously,

the value of skip will be the offset to the start of the JPEG. The easiest way
to handle the block size is to specify it as bs=1 (meaning one byte) and then
setting count to the size of the file. The name of the output file is arbitrary.

dd if=image_carve.raw of=carv.jpg skip=21156 bs=1 count=6610
6610+0 records in
6610+0 records out

 You should now have a file in your current directory called carv.jpg.
If you are in X, simply use the xview command to view the file (or any other
image viewer) and see what you’ve got.

 xview carv.jpg

Carving partitions with dd

 Now we can try a more useful exercise in carving with dd. Often, you
will obtain or be given a dd image of a full disk. At times you might find it
desirable to have each separate partition within the disk available to search
or mount. Remember, you cannot simply mount an entire disk image, only
the partitions.

 This can be accomplished in a number of ways. One theoretically
complex method would be to use the Enhanced Loopback driver (provided
by NASA’s Computer Crimes Division) to associate an entire disk image
with a single loop device that is “partition aware”. We will talk more about
this method a little later.

 70

The method we will use in this exercise entails identifying the
partitions within a dd image using the standard loopback device along with
fdisk or sfdisk. We will then use dd to carve the partitions out of the image.

First, let’s grab the practice disk image that we will be working on.

This is a dd image of a 330MB disk from a Linux system that was
compromised (“hacked”).

ftp://ftp.hq.nasa.gov/pub/ig/ccd/linuxintro/able2.tar.gz

The tar archive contains the disk image, the MD5 digest values, and

the imaging log file with information collected during the imaging process.

Create a directory called “able2” in your /root directory. This will be

the working directory for the following exercise. Again, the vast majority of
steps taken in preparation for, and execution of a forensic analysis require
root access to commands and devices.

Once you have downloaded the file, check the md5sum (it should
match the output below):

md5sum able2.tar.gz
a0cef6c441ae84ef931c541d73ee619f able2.tar.gz

The file name is derived from the original hostname of the machine

that was compromised (“hacked”). Very often we name our cases and
evidence with the original hostname of the machine we are investigating.

If the MD5 matches, then we can continue…We now need to check

the contents of the tar archive, then extract and decompress the archive.

tar tzvf able2.tar.gz
able2.dd (disk image)
able2.log (log of the collection)
md5.dd (md5 hash of the image)
md5.hdd (md5 hash of the original disk)

tar xzvf able2.tar.gz

 71

This executes the tar command with the options –x to extract the
files, -z to decompress the files, -v for verbose output, and –f to specify the
file.

Have a look at the files that result:

ls -lh
total 464M
-rwxrwxr-x 1 root root 330M Aug 10 21:16 able2.dd
-rwxrwxr-x 1 root root 3.6k Aug 11 07:56 able2.log
-rwxrwxr-x 1 root root 134M Aug 11 14:42 able2.tar.gz
-rwxrwxr-x 1 root root 43 Aug 10 21:16 md5.dd
-rwxrwxr-x 1 root root 43 Aug 10 21:04 md5.hdd

The output of ls –lh (the –lh is for “long list with human readable

sizes”) shows the 330MB dd image, the logfile and two files that record the
original MD5 hashes, one for the image (md5.dd) and one for the original
disk (md5.hdd). At this point you can check the hash of the able2.dd and
compare it to the value stored in md5.dd to be sure the image is intact.

cat md5.dd
02b2d6fc742895fa4af9fa566240b880 able2.dd

md5sum able2.dd
02b2d6fc742895fa4af9fa566240b880 able2.dd

 Okay, now we have our image, and we have verified that it is an
accurate copy. We now want to know a little bit about the contents of the
image and what it represents. During the evidence acquisition process, it is
essential that information about the disk be recorded. Standard operating
procedures should include collection of disk and system information, and not
just the dd image itself.

 The file able2.log was created from the output of various commands
used during the evidence collection process. The log includes information
about the investigator that gathered the evidence, information about the
system, and the output of commands including hdparm, fdisk, sfdisk and
hashing functions. We create the log file by appending (“>>”) the output of
the commands, in sequence, to the log:

 72

command >> logfile.txt

Look at the log file, able2.log, using less and scroll down to the
section that shows the structure of the disk (the output of fdisk –l /dev/hdd
and sfdisk –l –uS /dev/hdd):

fdisk output for SUBJECT disk:

Disk /dev/hdd: 345 MB, 345830400 bytes
15 heads, 57 sectors/track, 790 cylinders
Units = cylinders of 855 * 512 = 437760 bytes

 Device Boot Start End Blocks Id System
/dev/hdd1 1 12 5101+ 83 Linux
/dev/hdd2 13 132 51300 83 Linux
/dev/hdd3 133 209 32917+ 82 Linux swap
/dev/hdd4 210 790 248377+ 83 Linux

sfdisk output for SUBJECT disk:

Disk /dev/hdd: 790 cylinders, 15 heads, 57 sectors/track
Units = sectors of 512 bytes, counting from 0

 Device Boot Start End #sectors Id System
/dev/hdd1 57 10259 10203 83 Linux
/dev/hdd2 10260 112859 102600 83 Linux
/dev/hdd3 112860 178694 65835 82 Linux swap
/dev/hdd4 178695 675449 496755 83 Linux

The output shown above is directly from the victim hard drive (the

machine able2), recorded prior to obtaining the dd image. It shows that
there are 4 partitions on the drive. The data partitions are hdd1, hdd2 and
hdd4. The hdd3 partition is actually a swap partition (for virtual memory).
Remember that the designation hdd indicates that the victim hard drive was
attached to our forensic workstation as the slave drive on the secondary IDE
controller during the imaging process, NOT how it was attached in the
original machine.

 73

The command sfdisk –l –uS /dev/hdd gave us the second listing
above and shows the partition sizes in units of “sectors” (-uS). The output
also gives us the start of the partition. For our partition carving exercise (as
with the raw data carving), all we need is the starting offset, and the size.

Let’s go ahead and dd out each partition. If you have the output of sfdisk –l
–uS /dev/hdx, the job is easy.

dd if=able2.dd of=able2.part1.dd bs=512 skip=57 count=10203
dd if=able2.dd of=able2.part2.dd bs=512 skip=10260 count=102600
dd if=able2.dd of=able2.part3.dd bs=512 skip=112860 count=65835
dd if=able2.dd of=able2.part4.dd bs=512 skip=178695 count=496755

Examine these commands closely. The input file (if=able2.dd) is the
full disk image. The output files (of=able2.part#.dd) will contain each of
the partitions. The block size that we are using is the sector size (bs=512),
which matches the output of the sfdisk command. Each dd section needs to
start where each partition begins (skip=X), and cut as far as the partition
goes (count=Y). We also obtained partition number three, the swap
partition. This can also be searched with grep and strings (or carving
utilities) for evidence.

This will leave you with four able2.part*.dd files in your current
directory that can now be loop mounted.

What if you have a dd image of the full disk, but no log file or access
to the original disk, and therefore no info from sfdisk or fdisk?

We can use the standard loopback device to associate the dd image
with a device, and then run our commands against that:

losetup /dev/loop0 able2.dd

As we discussed earlier (during our floppy exercise), the loop device
allows us to associate a regular file (forensic image) with a device. In this
case we have a dd image that we want to view as a disk. We use losetup to
tell the system to associate the file able2.dd to the device file /dev/loop0.
Essentially, this makes /dev/loop0 look like the original disk.

 74

sfdisk –l –uS /dev/loop0
Disk /dev/loop0: cannot get geometry

Disk /dev/loop0: 0 cylinders, 0 heads, 0 sectors/track
Warning: The first partition looks like it was made
 for C/H/S=*/15/57 (instead of 0/0/0).
For this listing I'll assume that geometry.
Units = sectors of 512 bytes, counting from 0

 Device Boot Start End #sectors Id System
/dev/loop0p1 57 10259 10203 83 Linux
/dev/loop0p2 10260 112859 102600 83 Linux
/dev/loop0p3 112860 178694 65835 82 Linux swap
/dev/loop0p4 178695 675449 496755 83 Linux

Aside from the error messages at the beginning of the output, notice

that the actual disk geometry (in sectors) matches that taken from the
original disk! The partitions are now noted as /dev/loop0p*, indicating,
“loop device zero, partitions 1 through 4”. In a pinch, we could use this to
gather information from the standard loop device to determine the disk
partitioning5.

When you are finished with the loop0 association, be sure to remove it:

losetup –d /dev/loop0

Unfortunately, you cannot mount the partitions associated with
/dev/loop0p*. The block devices don’t actually exist. This is where the
NASA Enhanced Loopback Driver comes in.

The NASA Enhanced Loopback Driver

In the preceding section we discussed using dd to carve partitions out
of a bit-stream forensic image. The reason we do this is to allow us to mount
those partitions for analysis. We found that we could use the standard
loopback driver to assist us in determining the partitions contained in the

5 The purpose of this section is to explore the concept of the loop devices in more detail. In actuality, the
original dd image is a file just like /dev/loop0 or /dev/hdx. Try the fdisk or sfdisk commands on the dd
image itself to see what I mean.

 75

image if the original drive is not available. We also learned that we couldn’t
use the standard loopback driver to actually mount the partitions.

The NASA Computer Crimes Division has developed an Enhanced
Loopback Driver that takes steps toward solving these issues. It is available
in several forms from the following site:

ftp://ftp.hq.nasa.gov/pub/ig/ccd/enhanced_loopback/

The documentation (located at the same place) is clear, and the
installation is fairly straightforward. Although you should always keep in
mind that when you are messing with the system kernel, you are acting as a
brain surgeon on your computer. It’s always possible that it won’t wake up
again (won’t boot). For the most part, this is recoverable with a boot disk,
but the process can be frustrating and time consuming.

The Enhanced Loopback driver is actually a kernel module. It is
made available as a part of a full kernel pre-compiled binary, or as a full
kernel source package that you can customize and compile yourself. If you
wish to try the NASA Loopback Kernel, consider using the pre-compiled
binary. If you are interested in learning to compile your own kernel for
forensic use, then I would suggest reading Thomas Rude’s (Farmerdude)
thorough paper on the subject at:

http://www.crazytrain.com/monkeyboy/FSK.pdf

Farmerdude offers some detailed information on what the kernel is,
how it works, and options available to you to make your kernel fit your
needs. Do not underestimate the importance of this subject to your
continued Linux education. The benefits and dangers of compiling a custom
kernel are outside the scope of this beginner’s guide, but I would strongly
suggest you read Farmerdude’s paper if you have any desire to learn more
nuts and bolts Linux. There is a plethora of information available at
Farmerdude’s website regarding Linux and its application as a forensic
platform at

http://www.crazytrain.com

 76

Determining the Subject Disk Filesystem Structure

Going back to our able2 case dd images, we now have the original
image along with the partition images that we carved out.

able2.dd (original image)
able2.part1.dd (1st Partition)
able2.part2.dd (2nd Partition)
able2.part4.dd (4th Partition)

The next trick is to mount the partitions in such a way that we

reconstruct the original filesystem.

One of the benefits of Linux/Unix systems is the ability to separate the
filesystem across partitions. This can be done for any number of reasons,
allowing for flexibility where there are concerns about disk space or
security, etc.

For example, a System Administrator may decide to keep the
directory /var/log on its own separate partition. This might be done in an
attempt to prevent rampant log files from filling the root (“/” not “/root”)
partition and bringing the system down. It is common to see /boot in its
own partition as well. This allows the kernel image to be placed near “the
front” (in terms of cylinders) of a hard drive, an issue in older versions of the
Linux boot loader LILO. There are also a variety of security implications
addressed by this setup.

So when you have a disk with multiple partitions, how do you find out
the structure of the file system? Earlier in this paper we discussed the
/etc/fstab file. This file maintains the mounting information for each file
system, including the physical partition; mount point, file system type, and
options. Once we find this file, reconstructing the system is easy. With
experience, you will start to get a feel for how partitions are setup, and
where to look for the fstab. To make things simple here, just mount each
partition (loopback, read only) and have a look around.

One thing we might like to know is what sort of file system is on each
partition before we try and mount them. We can use the file command to do

 77

this6. Remember from our earlier exercise that the file command determines
the type of file by looking for “header” information.

file able2.part*
able2.part1.dd: Linux rev 1.0 ext2 filesystem data…
able2.part2.dd: Linux rev 1.0 ext2 filesystem data…
able2.part3.dd: Linux/i386 swap file (new style)…
able2.part4.dd: Linux rev 1.0 ext2 filesystem data…

Previously, we were able to determine that the partitions were “Linux”
partitions from the output of fdisk and sfdisk. Now file informs us that the
file system type is ext27. We can use this information to mount the
partitions.

mount -t ext2 -o ro,loop able2.part1.dd /mnt/analysis/

Do this for each partition (either unmounting between partitions, or

mounting to a different mountpoint) and you will find the /etc directory
containing the fstab file in able2.part2.dd with the following entries:

/dev/hda2 / ext2 defaults 1 1
/dev/hda1 /boot ext2 defaults 1 2
/dev/hda4 /usr ext2 defaults 1 2
/dev/hda3 swap Swap defaults 0 0

So now we see that the logical file system was constructed from three

separate partitions (note that /dev/hda here refers to the disk when it is
mounted in the original system):

 “/” (root) mounted from /dev/hda2 (data on hda2)

|_ bin/ (data on hda2)
|_boot/ mounted from /dev/hda1 (data on hda1)
|_dev/ (data on hda2)
|_etc/ (data on hda2)

6 Keep in mind that the file command relies on the contents of the magic file to determine a file type. If
this command does not work for you in the following example, then it is most likely because the magic file
on your system does not inlcude headers for filesytem types.
7 You can also use the auto filesystem type under the mount command, but I prefer to be explicit. Check
man mount for more information.

 78

|_home/ (data on hda2)
|_lib/ (data on hda2)
|_opt/ (data on hda2)
|_proc/ (data on hda2)
|_usr/ mounted from/dev/hda4 (data on hda4)
|_root/ (data on hda2)

 |_sbin/ (data on hda2)
 |_tmp/ (data on hda2)
 |_var/ (data on hda2)

Now we can create the original file system at our analysis mount point by
creating separate directories for each partition. The mount point
/mnt/analysis already exists. We create the other two with:

mkdir /mnt/analysis/boot
mkdir /mnt/analysis/usr

Now we mount each partition image at its respective mountpoint:

mount -t ext2 -o ro,loop able2.part2.dd /mnt/analysis/
mount -t ext2 -o ro,loop able2.part1.dd /mnt/analysis/boot
mount -t ext2 -o ro,loop able2.part4.dd /mnt/analysis/usr

We now have the recreated original file system under /mnt/analysis:

“/” (root) mounted on /mnt/analysis
|_ bin/
|_boot/ mounted on /mnt/analysis/boot
|_dev/
|_etc/
|_home/
|_lib/
|_opt/
|_proc/
|_usr/ mounted on /mnt/analysis/usr
|_root/

 |_sbin/
 |_tmp/
 |_var/

 79

At this point we can run all of our searches and commands just as we
did for the previous floppy disk exercise on a complete file system “rooted”
at /mnt/analysis.

As always, you should know what you are doing when you mount a
complete file system on your forensic workstation. Be aware of options to
the mount command that you might want to use (check man mount for
options like “nodev” and “nosuid”, “noatime” etc.). Take note of where
links point to from the subject file system. Note that we have mounted the
partitions “read only” (ro). Remember to unmount each partition when you
are finished exploring.

 80

X. Advanced Forensic Tools

 So now you have some experience with using the Linux command
line and the powerful tools that are provided with a Linux installation.
However, as forensic examiners, we soon come to find out that time is a
valuable commodity. While learning to use the command line tools native to
a Linux install is useful for a myriad of tasks in the “real world”, it can also
be tedious. After all, there are Windows based tools out there that allow you
to do much of what we have discussed here in a simple point and click GUI.
Well, the same can be said for Linux.

 The popularity of Linux is growing at a fantastic rate. Not only do we
see it in an enterprise environment and in big media, but we are also starting
to see its widening use in the field of computer forensics. In recent years
we’ve seen the list of available forensic tools for Linux grow with the rest of
the industry.

 In this section we will cover a number of forensic tools available to
make your analysis easier and more efficient. We will cover both free tools
and commercial tools.

AUTHOR’S NOTE: Inclusion of tools and packages in this section in
no way constitutes an endorsement of those tools. Please test them
yourself to ensure that they meet your needs. The tools here were
chosen because it was suggested by a large number of readers of the
original Introduction document that I provide information on forensic
packages for Linux.

Since this is a Linux document, I am covering available Linux tools.
This does not mean that the common tools available for other
platforms cannot be used to accomplish many of the same results. On
a personal note, I do maintain that analysis of a Unix system is best
accomplished with a Unix (like) toolset.

 81

 Sleuthkit

 The first of the tools we will cover here is actually not a GUI tool at
all, but rather a collection of command line tools. We cover them here
because we will soon introduce a tool (Autopsy) that provides a nice GUI
wrapper.

The Sleuthkit is written by Brian Carrier and maintained at

http://www.sleuthkit.org. It is partially based on The Coroner’s Toolkit
(TCT) originally written by Dan Farmer and Wietse Venema. The Sleuthkit
adds additional file system support (FAT and NTFS). Additionally, the
Sleuthkit allows you to analyze various file system types regardless of the
platform you are currently working on. The current version, as of this
writing is sleuthkit-1.66. Go to the “downloads” section of the Sleuthkit
website and grab a copy. For the sake of simplicity, let’s just download the
file to our /root (root user’s home) directory.

 Installation is easy. You can simply un-tar the file then change in to
the resulting directory:

tar xzvf sleuthkit-1.66.tar.gz
 cd sleuthkit-1.66

 Take a moment to read the included documentation. We will continue
with a short description here, but most of what you need to know is right
there.

 Compiling the tools is as simple as typing make right in that
directory. If you run into any problems, read the INSTALL document. When
the compiling is finished, you will find the Sleuthkit tools located in the
sleuthkit-1.66/bin directory. The man pages for each command are located
in the sleuthkit/man directory. Normally you would move or link the
executable files to a common directory somewhere in your path. We are
going to leave the tools where they are and call them explicitly.

 82

 The Sleuthkit’s tools are organized by what the author calls a “layer”
approach.

• File system layer – fsstat,
• File name layer – fls, ffind
• Content (data) layer – dcalc, dcat, dls, dstat
• Meta data (inode) layer – icat, ils, ifind, istat

Notice that the commands that correspond to the analysis of a given

layer begin with a common letter. For example, the file system command
starts with “fs”, and the inode layer commands start with “i”.

We are going to do a quick sample analysis using just a few of the
Sleuthkit command line tools. Like all of the other exercises in this
document, I’d suggest you follow along if you can. Using these commands
on your own is the only way to really learn the techniques.

Let’s have a look at a couple of the file system and file name layer
tools, fsstat and fls. We will run them against our able2 partition images8.
For the sake of this analysis, the information we are looking for is located on
the root partition.

Remember from our previous analysis of the able2 dd images that the

root (“/”) file system is located on the second partition (able2.part2.dd).

Make sure you are in /root/sleuthkit-1.66/bin/ (or wherever you
installed the Sleuthkit) and run the following command:

 ./fsstat /root/able2/able2.part2.dd

8 The Sleuthkit works on partition images, not on whole disk images. This is one reason why it might be
useful to learn how to carve partitions (or take partition dd images).

 83

You should see the following output (partial):

FILE SYSTEM INFORMATION
--
File System Type: EXT2FS
Volume Name:
Last Mount: Thu Feb 13 02:33:02 1997
Last Write: Sun Aug 10 14:50:03 2003
Last Check: Tue Feb 11 00:20:09 1997
Unmounted Improperly
Last mounted on:
Operating System: Linux
Dynamic Structure
InCompat Features: Filetype,
Read Only Compat Features: Sparse Super,

META-DATA INFORMATION
--
Inode Range: 1 - 12880
Root Directory: 2

CONTENT-DATA INFORMATION
--
Fragment Range: 0 - 51299
Block Size: 1024
Fragment Size: 1024

 <CONTINUES>

 The fsstat command provides file system specific information about
the file system located in a device or partition image.

 We can get more information using the fls command. fls lists the file
names and directories contained in a file system, with a number of options.
If you type “./fls” on its own, you will see the available options (view the
man page for a more complete explanation).

 84

./fls –f linux-ext2 –Frd /root/able2/able2.part2.dd

r/r * 11120(realloc): var/lib/slocate/slocate.db.tmp
r/r * 10063: var/log/xferlog.5
r/r * 10063: var/lock/makewhatis.lock
r/r * 6613: var/run/shutdown.pid
r/r * 1046: var/tmp/rpm-tmp.64655
r/r * 6609(realloc): var/catman/cat1/rdate.1.gz
r/r * 6613: var/catman/cat1/rdate.1.gz
r/r * 6616: tmp/logrot2V6Q1J
r/r * 2139: dev/ttYZ0/lrkn.tgz
d/r * 10071(realloc): dev/ttYZ0/lrk3
r/r * 6572(realloc): etc/X11/fs/config-
l/r * 1041(realloc): etc/rc.d/rc0.d/K83ypbind
l/r * 1042(realloc): etc/rc.d/rc1.d/K83ypbind
l/r * 6583(realloc): etc/rc.d/rc2.d/K83ypbind
l/r * 6584(realloc): etc/rc.d/rc4.d/K83ypbind
l/r * 1044: etc/rc.d/rc5.d/K83ypbind
l/r * 6585(realloc): etc/rc.d/rc6.d/K83ypbind
r/r * 1044: etc/rc.d/rc.firewall~
r/r * 6544(realloc): etc/pam.d/passwd-
r/r * 10055(realloc): etc/mtab.tmp
r/r * 10047(realloc): etc/mtab~
r/- * 0: etc/.inetd.conf.swx
r/r * 2138(realloc): root/lolit_pics.tar.gz
r/r * 2139: root/lrkn.tgz

 In this case, we are running the fls command against an Ext2 file
system (-f linux-ext2), showing only file entries (-F), descending into
directories (-r), and displaying deleted entries (-d). The output gives us the
file name and the inode to which that file is associated.

 Now let’s use a couple of Metadata (inode) layer tools included with
the Sleuthkit. An inode has unique number and is assigned to a file. The
number corresponds to the inode table, allocated when a partition is
formatted. The inode contains all the metadata available for a file, including
the modified/accessed/changed times and all the data blocks allocated to that
file.

 85

First we are going to use istat from the Sleuthkit. Remember that
fsstat took a file system as an argument and reported statistics about that file
system. Well, istat does the same thing; only it works on a specified inode.

If you look at the output of our fls command, you will see a file called
lrkn.tgz located in the /root directory (the last file in the output of our fls
command). The inode displayed by fls for this file is 2139. Note that this
same inode also points to a file in /dev (same file, different location). We
are going to use istat to gather some information about inode 2139.
Remember, we are in the sleuthkit/bin directory, so we use “./” to indicate
that the command (not in our path) is run from the current directory:

./istat -f linux-ext2 /root/able2/able2.part2.dd 2139 | less

inode: 2139
Not Allocated
Group: 1
uid / gid: 0 / 0
mode: -rw-r--r--
size: 3639016
num of links: 0

Inode Times:
Accessed: Sun Aug 10 00:18:38 2003
File Modified: Sun Aug 10 00:08:32 2003
Inode Modified: Sun Aug 10 00:29:58 2003
Deleted: Sun Aug 10 00:29:58 2003

Direct Blocks:
22811 22812 22813 22814 22815 22816 22817 22818
22819 22820 22821 22822 22824 22825 22826 22827
...<snipped>
32225 32226 32227 32228 32229 32230 32231 32232
32233 32234

Indirect Blocks:
22823 23080 23081 23338 23595 23852 24109 24366
30478 30735 30992 31249 31506 31763 32020

 86

 This reads the inode statistics (./istat), on an ext2 (-f linux-ext2)
partition (/root/able2/able2.part2.dd) from inode 2139. There is a large
amount of output here, showing all the inode information and the direct and
indirect blocks9 that contain all of the file’s data. We can either pipe the
output to a file for logging or evidence results, or we can send it to less for
viewing.

We now have the name of the deleted file (from fls) and the inode

information, including where the data is stored (from istat). Now we are
going to use the icat command from the Sleuthkit to grab the actual data
contained in the data blocks referenced from the inode. icat also takes the
“inode” as an argument and reads the content of the data blocks that are
assigned to that inode, sending it to standard output.

We are going to send the contents of the data blocks assigned to that

inode to a file for closer examination. Again, we issue the following
command from the sleuthkit/bin directory:

./icat –f linux-ext2 /root/able2/able2.part2.dd 2139 > /root/lrkn.tgz.2139

 This runs the icat command on our ext2 (-f linux-ext2) partition
(able2.part2.dd) and streams the contents of the data blocks associated with
inode 2139 to the file /root/lrkn.tgz.2139. The filename is arbitrary; I
simply took the name of the file from fls and appended the inode number to
indicate that it was recovered. Normally this output should be directed to
some results directory.

 Now that we have what we hope is a recovered file, what do we do
with it? Look at the resulting file with the file command:

file lrkn.tgz.2139
lrkn.tgz.2139: gzip compressed data, was "lrkn.tar", from Unix

Have a look at the contents of the recovered archive (pipe the output

through less…it’s long). Remember that the “t” option lists the contents of
the archive.

9 For a detailed description of “direct” and “indirect” blocks, see
http://e2fsprogs.sourceforge.net/ext2intro.html.

 87

Don’t just haphazardly extract an archive without knowing what it
will write, or especially where10:

tar tzvf lrkn.tgz.2139 | less

drwxr-xr-x lp/lp 0 1998-10-01 18:48:18 lrk3/
-rwxr-xr-x lp/lp 742 1998-06-27 11:30:45 lrk3/1
-rw-r--r-- lp/lp 716 1996-11-02 16:38:43 lrk3/MCONFIG
-rw-r--r-- lp/lp 6833 1998-10-03 05:02:15 lrk3/Makefile
-rw-r--r-- lp/lp 6364 1996-12-27 22:01:43 lrk3/README
<CONTINUES>

Notice that there is a README file included in the archive. If we are

curious about the contents of the archive, perhaps reading the README file
would be a good idea, yes? Rather that extract the entire contents of the
archive, we will go for just the README using the following tar command:

tar xzvfO lrkn.tgz.2139 lrk3/README > /root/README.2139

 The difference with this tar command is that we specify that we want
the output sent to stdout (“O”) so we can redirect it. We also specify the
name of the file that we want extracted from the archive (lrk3/README).
This is all redirected to a new file called /root/README.2139.

 If you read that file, you will find that we have uncovered a “rootkit”,
full of trojanized programs used to hide a hacker’s activity.

 What we have seen here is a simple (and in many ways incomplete)
example of the Sleuthkit’s command line tools for forensic examination. If
you are left a little confused, just go through the steps one at a time. If you
don’t understand the commands or options, check the usage and read the
man pages and Sleuthkit documentation. Run through the exercise a couple
of times, and the purpose and outcome will make more sense. Take your
time and experiment a little with the options.

10 Let’s face it, it would be BAD to have an archive that contains a bunch of trojans and other nasties (evil
kernel source or libraries, etc.) overwrite those on your system. Be extremely careful with archives.

 88

 We are now going to look at an easier way to “point and click”
your way through a Sleuthkit exam, organizing your investigation as you go
using Autopsy.

Autopsy

 Autopsy is another great program by Brian Carrier that provides a
nice html based front end to the Sleuthkit. In addition to allowing you easy
access to the functions provided by the Sleuthkit tools, Autopsy provides a
vehicle for organizing your cases and the images and hosts associated with
those cases. Download Autopsy at the Sleuthkit website.

 We begin by installing Autopsy (version 1.75 will be used with
Sleuthkit 1.66). As with all software, you should read the included
documentation thoroughly before you get started. The documents included
in the Autopsy (and Sleuthkit, for that matter) are well written and explain
everything you need to know. Some of the high points to take note of before
beginning the installation process:

1. We have to create an “Evidence Locker” for Autopsy to store
generated results. Do this with the mkdir command in a suitable
directory with enough space:

mkdir /root/autopsy_evid/

2. Know the path to your Sleuthkit directory. You have to enter it
during the Autopsy install.

3. You can also use a hash database for data reduction purposes (known

good files and/or known bad files). While we are not going to use
such a database here, be aware of the capability. Proper use of hash
databases can often be a huge time saver.

Begin the installation by untarring the autopsy-1.75.tar.gz archive in the

root directory with.

tar xzvf autopsy-1.75.tar.gz

 89

Change into the resulting autopsy-1.75 directory and type make. The
program will search for several files, and then prompt you for the location of
your Sleuthkit install. Enter the path. When you are asked about the
location of your NSRL database, just hit enter (unless you installed it).
Finally, enter the path of our Evidence Locker (/root/autopsy_evid).

All we need to do is start the Autopsy process. Obviously, we will need

to be in the X Window environment to use the tool. In a terminal window,
enter:

./autopsy

Once the Autopsy process starts, you will want to open your browser

and copy the resulting URL into your browser window.

===

 Autopsy Forensic Browser
 http://www.sleuthkit.org/autopsy/
 ver 1.75

===

Evidence Locker: /root/autopsy_evid/
Start Time: Sun Aug 17 16:13:56 2003
Remote Host: localhost
Local Port: 9999

Open an HTML browser on the remote host and paste this URL in it:

 http://localhost:9999/30982529072506971042/autopsy

Keep this process running and use <ctrl-c> to exit

Be careful not to close the terminal window. The Autopsy process

starts as a “child” of the terminal in which it is started. If the terminal
window is killed, so is Autopsy.

 90

Copying the URL shown above (yours might differ) and pasting it into
your browser results in the Autopsy HTML interface being displayed. Take
note of the “Help” button in the lower right. The HTML help pages are
detailed and extremely useful if you get stuck or curious:

Figure 1. Autopsy opening screen

Click on “New Case” and fill in the required information:

Figure 2. Entering new case information

 91

 Click on “New Case” again, and then read the information that
Autopsy provides on the steps it has taken (creating new directories, etc.).

You are then taken to the “Case Gallery”. When you have more than
one case started, they will all be displayed here. As you start Autopsy, you
will select the case with the corresponding radio button and then click “ok”
to go to that case.

Figure 3. The "Case Gallery"

 After entering the case that we just created, we are presented with a
screen that tells us that we need to add a “host” in the “Host Gallery”. The
case name is displayed in the top left hand corner:

Figure 4. An empty "Host Gallery"

 At this point, we need to provide a little explanation that might be
obvious to some, but not to those of you who do not commonly handle
network intrusion cases. The term “host” refers to any computer, identified

 92

by name or IP address, connected to the network (local or wide area). A
host computer can be either a victim or a “hostile”. Both require forensic
examination in most cases. Details on network intrusion investigations are
outside the scope of this document.

 Enter the “Add Host” section and fill in the required information:

Figure 5. Adding a new host

 The information we provide above includes the Host Name (name or
IP of the computer), which will be used to name the directory in our
evidence locker, a description, the time zone of the computer, and the time
skew.

The available time zones can be found in your /usr/share/zoneinfo
directory. In this case, I used EST5EDT (Eastern Standard Time, 5 hours
from GMT, Eastern Daylight Time). The time skew describes the number of
seconds the host’s clock was off from a standard clock. This is important for
reconciling log entries and file times.

 93

Figure 6. A single host entered in the "Host Gallery"

 Now that we have the case defined, and a host within that case
defined, we need to tell the host about the different forensic images that
make up our evidence gathered from able2. Click “ok” (above) to enter the
able2 “Host Manger” area. Again, if there were multiple hosts defined for
this case, we would select the host we want to manage with the appropriate
radio button.

Figure 7. The "Host Manager" prior to adding forensic images

 We are now in the Host Manager (above). Notice that “No images
have been added” is telling us that there is not yet any evidence associated
with this host. We need to add the appropriate images, so click on “Add
Image”.

 94

Figure 8. Adding the partition images to the "Host Manager" for our host

 Much of the information we need to input in the dialog box shown
above was calculated earlier in our exercises. We already mentioned that
Sleuthkit (and therefore Autopsy) works (for now) on partition images, not
on disk images. Earlier, we calculated the sizes and locations of the
partitions and carved them out of the original able2.dd image. It is these
images that we will use in this case.

 Autopsy gives you the choice of “linking” (creating a shortcut) from
the original location of the partition image, copying the image, or moving
the image to the evidence locker (/root/autopsy_evid/…). I prefer to symlink
the image. Do whichever you prefer, but make sure you have enough room.

 95

 In most of our Sleuthkit commands from the previous exercise, we
had to specify the file system type with a command option (-f linux-ext2).
In the above dialog box, we specify it in a dropdown box. Any operation
taken on that image will apply that file system type.

Finally, we fill in the “Original Mount Point”. Again, we found this
out earlier in our exercises by accessing the /etc/fstab file from the
able2.part2.dd image. In much the same way that we did it manually
earlier11, Autopsy is using the information we are providing to rebuild the
original file system from the able2 host.

able2.part1.dd /boot ext2 /dev/hda1
able2.part2.dd / ext2 /dev/hda2
able2.part4.dd /usr ext2 /dev/hda4
able2.part3.dd swap Swap /dev/hda3

 We need to go through the “Add Image” process once for each
partition image that we carved from the original able2.dd. Note that for the
file system type for able2.part3.dd (the swap partition), you can just put
none. When you are finished, the Host Manager page should look like this:

Figure 9. Completed "Host Manager" for our host, able2

11 See the section Determining the Subject Disk Filesystem Structure on page 76.

 96

 The image above shows the completed Host Manager entries for our
case. We are now ready to explore Autopsy, and the powerful forensic
capabilities it gives us.

 In addition to giving us a “point and click” environment for accessing
the commands available with the Sleuthkit, Autopsy has also done a good
job of organizing our case based on the information we filled in.

/root (root user’s home directory)
 |_ autopsy_evid our evidence locker
 |_ Linux_Intro our case name
 |_able2 our first host
 |_images
 |_logs
 |_mnt
 |_output
 |_reports
 |_host 2 if we add another computer
 |_host3

 |_Second Case
 |_host
 …etc.

 Most of the exploration of this powerful software package I will leave
up to the reader. This is a beginner’s document, aimed only at getting you
started. We will go through a couple of steps, and leave the rest to your
curiosity…

 Let’s have a look at some of the commands and steps we took using
the Sleuthkit’s command line tools on this same evidence, this time using
Autopsy.

First, in the Host Manager make sure the radio button for
able2.part2.dd (the “/” partition) is selected, and click “okay”. In the
resulting page, there is a frame at the top with a row of buttons for various
functions. Click on the button “Image Details” and look at the output. Does
it look familiar?

 97

Figure 10. "Image Details" provides similar output to "fsstat"

 This is the same output we saw from our fsstat command from the
Sleuthkit! Let’s go a little deeper and see if we can reproduce more of our
Sleuthkit output.

In the top frame row of buttons, click “File Analysis” (we are still in
the able2.part2.dd image, the “/” file system of able2). We are now given a
“tree” view of the contents of the selected image.

 98

Figure 11. "File Analysis" display

 In the left hand pane, there is a button labeled “All Deleted Files”.
Click on this button…

Figure 12. "All Deleted Files" provides similar output to fls

 This generates a list of all the deleted files found on this partition.
Again, do you recognize the output? It provides similar output to our fls
command from the Sleuthkit. Scroll to the bottom of the list, and you will
see our /root/lrkn.tgz, recovered by the Sleuthkit from inode 2139. Once
you scroll to the bottom of the list and see /root/lrkn.tgz, you can scroll all

 99

the way to the right and see that the file is indeed associated with inode
2139.

 If you click ON THE INODE NUMBER (2139), you will see the
following:

Figure 13. Click ON THE INODE number (all the way to the right, see the arrow)

 Again, you see the output is similar to out output from the Sleuthkit
command istat (under “Details:”). Clicking on “Export Contents” produces
a dialog box that allows us to save the file to our local file system. If you
retrace the same process we followed with the previous exported contents of
inode 2139 using Sleuthkit12, you will find the same results.

 This is as far as we will go with Sleuthkit/Autopsy in this beginner
environment. Hopefully you will continue to explore some of the useful
features of Autopsy on your own (the timeline feature is especially useful for
intrusion investigations).

12 See Page 86.

 100

SMART for Linux

 SMART, by ASR Data, is a commercial (not free) GUI based forensic
tool for Linux that has a great interface allowing access to a full set of
forensic analysis capabilities.

 http://www.asrdata.com/SMART/

Figure 14. Smart splash screen and login

 We are not going to do a full practical exercise with SMART, since it
is a commercial tool, and not many beginner readers will have it available.
Following is a small tour to give you a taste of the SMART interface.

 Opening SMART provides the user with a view of the physical layout
of all the devices recognized on the system, including internal and external
drives. This gives the examiner an overall picture of what file systems
reside on each drive, the sizes of each partition, and the amount of
unallocated space on the drive.

 101

Figure 15. Smart’s opening window with drive identification

 SMART is a “right click” driven program. Most functions available to
an examiner for a given object are accessed through a mouse driven menu
system. For instance, right clicking on a physical device (disk or partition)
provides a menu that includes “Acquire”. Selection of this item provides a
dialog box to allow forensic imaging.

 102

Figure 16. Forensic image acquisition dialog box. Red text indicates incomplete items…

Figure 17. The "Image" tab under "Acquire".

 103

 Case management under SMART is straightforward. Once a forensic
image (or multiple images) is added as evidence to a case, SMART will
parse the image and provide details on the contents. Here we’ve added our
able2.dd image to a case:

Figure 18. A SMART look at our evidence image

 We see each of the partitions as a graphical representation of the same
sort of information we might gather using fdisk –l on a physical disk.

 Right clicking on a partition allows you to “Study” it and obtain
information and a file listing (including deleted files). Additional right
clicks on the files will access menus that allow us to export the file(s) or
view them as raw data for closer study.

 104

Figure 19. Right click on a deleted file

 The right click menu displayed for a file in a file listing allows you to
perform a number of tasks. In the above screenshot, we see that we have the
ability to export the contents of the deleted file at inode 2139, leading us to
the same steps as we took with Sleuthkit/Autopsy on the same data.

Additionally, we can use SMART to loop mount the partitions with a
simple click and browse the file system in either a terminal or in the file
manager of your choice. This provides us the ability to use all our favorite
Linux tools to search the logical file system and display the information we
need for our analysis.

As with all advanced forensic tools, SMART provides excellent

session and Case logging functions.

Other Advanced Linux Forensic Tools

 There are too many tools to include in this document. For a sample of
some other tools that might be of interest to a forensic examiner using
Linux, check http://www.opensourceforensics.org/tools/unix.html .

 105

XI. Bootable Linux Distributions

 For so many people, this is the meat and potatoes of what makes
Linux such a flexible operating system. Access to a bootable CD drive and
the ability to reboot the machine can now give us the power to run a full-
fledged Linux box without the need to install. For those who have not seen
this in action, the power you can get from a CDROM, or even a floppy disk
is amazing. This is not a complete list, but the following bootable
distributions can give you some idea of what’s available to you. There are
many MANY more bootable distributions out there. Just do a Google search
on “Linux bootable CD” for a sample.

Tomsrtbt - boot from a floppy
This small distribution is the definition of minimalist, and it fits on

one floppy. You get a decent set of drivers for NICs and file systems
(including FAT and NTFS). There’s a basic set of common Linux tools,
including dd and rsh or nc for imaging over net connections and more. The
installation (to a floppy) can be done in Windows with an included batch
file. The floppy holds a surprising number of programs, and actually
formats your 1.44 Mb floppy to 1.722 Mb. Find it at
http://www.toms.net/rb/

Knoppix - Full Linux without the install
 This is a CDROM distribution for people who want to try a full-
featured Linux distribution, but don’t feel like installing Linux. It includes a
full Linux environment and a huge compliment of software. The CD
actually holds 2GB of software, including a full office suite, common
network tools and just about anything else you’re likely to need all
compressed to a CD sized image. http://www.knoppix.net

Penguin Sleuth - Knoppix with a forensic flavor
Re-mastered by Ernie Bacca, this Knoppix based distribution

maintains its user-friendliness and adds a good deal of forensic software as
well. The complete list of software (including Sleuthkit/Autopsy) can be
found at http://www.linux-forensics.com/forensics/pensleuth.html

 106

White Glove Linux - Dr. Fred Cohen
 White Glove Linux is a small, pocket-sized distribution developed by
Dr. Fred Cohen (http://www.all.net). The CD runs a minimalist but usable
Blackbox X interface and has a number of useful network audit tools that
allow you to check the integrity of, and audit systems. Everything from file
system checks, executable file validation and log checking, to finding
graphical images on the target system are addressed by White Glove.

 One of the important aspects of White Glove, especially with regard
to the network tools, is that the CD is a “known source” distribution. This
means that there are discrete sets of tools on the disk that have been
reviewed and are tested and supported by Dr. Cohen. Larger public
distributions (Knoppix, for example) attempt to get as much software on one
disk as possible. We cannot always be certain that what each program
advertises is the limit of what it does unless we are willing to test each tool
or read the source code for ourselves. On the other hand, White Glove is a
thoroughly tested and known source of network tools.

SMART for Linux - It’s bootable!

The installation CDROM for SMART doubles as a boot disk as well,
providing an excellent platform with an independently verified forensic tool
for acquiring and analyzing physical media. The hardware detection is
excellent (I’ve never had an issue with the CD). Once you start the system,
you can run “configx” and then “startx” and get a choice of GUI’s,
including a very clean Fluxbox interface with easy access to the SMART
User’s Guide and the program itself. SMART’s bootable CD provides a
bootable environment that you can be sure is forensically sound. We’ve
already had a glimpse of SMART’s capabilities.
http://www.asrdata.com/SMART/

 107

Conclusion

The examples and practical exercises presented to you here are very
simple. There are quicker and more powerful ways of accomplishing what
we have done in the scope of this document. The steps taken in these pages
allow you to use common Linux tools and utilities that are helpful to the
beginner.

Once you become comfortable with Linux, you can extend the

commands to encompass many more options. Practice will allow you to get
more and more comfortable with piping commands together to accomplish
tasks you never thought possible with a default OS load (and on the
command line to boot!);

• Compress an image as you create it.
• Image using dd over a network connection.
• Start learning how to automate these tasks with shell scripts

(shell scripts are your friend!).

I hope that your time spent working with this guide was well spent. At
the very least, I’m hoping it gave you something to do, rather than stare at
Linux for the first time and wonder “what now?”

 108

XI. Linux Support

Web sites to check for support:

Look here first: The Linux Documentation Project (LDP):

http://www.tldp.org

Linux Forensics:
 http://linux-forensics.com

Open Source Forensic Software:
 http://www.openforensics.org
 http://www.opensourceforensics.org

Software:
 http://sourceforge.net/

Thomas Rude’s (Farmerdude) Website - Linux Forensics Guru.
 http://www.crazytrain.com

Linux.com Sponsored by VA Linux

http://www.linux.com

The Official page of the Linux Kernel

http://www.kernel.org

Slashdot. News for Nerds. A must read, at least twice a day...

http://www.slashdot.org

