4.1.6 Monitoring Registry Activity

Because the system and applications depend so heavily on configuration settings to guide
their behavior, system and application failures can result from changing registry data or security.
When the system or an application fails to read settings that it assumes it will always be able to
access, it may not function properly, display error messages that hide the root cause, or even crash.
It’s virtually impossible to know what registry keys or values are misconfigured without
understanding how the system or the application that’s failing is accessing the registry. In such
situations, the Process Monitor utility from Windows Sysinternals (www.microsoft.com

/technet/sysinternals) might provide the answer.

Process Monitor lets you monitor registry activity as it occurs. For each registry access,
Process Monitor shows you the process that performed the access; the time, type, and result of the
access; and the stack of the thread at the moment of the access. This information is useful for
seeing how applications and the system rely on the registry, discovering where applications and
the system store configuration settings, and troubleshooting problems related to applications
having missing registry keys or values. Process Monitor includes advanced filtering and
highlighting so that you can zoom in on activity related to specific keys or values or to the activity
of particular processes.

Process Monitor Internals

Process Monitor relies on a device driver that it extracts from its executable image at run time
and then starts. Its first execution requires that the account running it have the Load Driver
privilege as well as the Debug privilege; subsequent executions in the same boot session require
only the Debug privilege because once loaded, the driver remains resident.

EXPERIMENT: Viewing Registry activity on an idle System

Because the registry implements the RegNotifyChangeKey function that applications can use
to request notification of registry changes without polling for them, when you launch Process
Monitor on a system that’s idle you should not see repetitive accesses to the same registry keys or
values. Any such activity identifies a poorly written application that unnecessarily negatively
affects a system’s overall performance.

Run Process Monitor, and after several seconds examine the output log to see whether you
can spot polling behavior. Right-click on an output line associated with polling, and then choose
Process Properties from the context menu to view details about the process performing the

activity.
EXPERIMENT: Using Process Monitor to locate application Registry Settings

In some troubleshooting scenarios, you might need to determine where in the registry the
system or an application stores particular settings. This experiment has you use Process Monitor to
discover the location of Notepad’s settings. Notepad, like most Windows applications, saves user

258

RICCARDO
StrikeOut

preferences—such as word-wrap mode, font and font size, and window position—across
executions. By having Process Monitor watching when Notepad reads or writes its settings, you
can identify the registry key in which the settings are stored. Here are the steps for doing this:

1. Have Notepad save a setting that you can easily search for in a Process Monitor trace. You
can do this by running Notepad, setting the font to Times New Roman, and then exiting Notepad.

2. Run Process Monitor. Open the filter dialog box, and the Process Name filter, and enter
notepad.exe as the string to match. This step specifies that Process Monitor will log only activity
by the notepad.exe process.

3. Run Notepad again, and after it has launched stop Process Monitor’s event capture by
toggling Capture Events on the Process Monitor File menu.

4. Scroll to the top line of the resultant log and select it.

5. Press Ctrl+F to open a Find dialog box, and search for times new. Process Monitor should
highlight a line like the one shown in the following screen that

represents Notepad reading the font value from the registry. Other operations in the
immediate vicinity should relate to other Notepad settings.

f_l- Enr Eumt H,Iu- _'[mu Q:hm: l;“:
oW ABE | wAS A [EEG
Procassbla . P Opststen Pl ook Dol :i
 ratspad v JH0H Oumpdanicinfir. L indmn Sy ser Ftbarss. A SUCTESS CrastionF e | AAANE1ERS 48 P Lacticrm=T nex 1A
% rabwpad oo 2E0H Chusfie L maiovn St ot haree. A SICTES
4 raizpad oo JEH Cuabifie Lotfinckrar Sy s S tharea. & SUCIEES Uszeed Arcmz Husd Datwf st Dnachoy, Ersouia s, Sne
!'um.-d e RO Chetaila [SR L e e | SLICTESS
T rbegeed eos 0 Lo bnage s S T i hoves. SCLESS brapguts EL e (hePRahAN. | w5 o [N
I-’U\em e TR Pl ity KO SLETESS Iﬁahmﬂkmm. Brankd dooess: Al a0t
o ot TEIE Penfensrion HELLN MR odaol Mt SETERS i i] T
'- MI:MM i Fogllsmpiaton - HEDU S s ot i odh O prspamant. SRS IR Largi 4.0t
S rotvpad o SN Faplsmpt i HECI S d ol £nos obep st Cmbalon SICTESS |pp| FECDWARI Langthc 4, Dt 1
& rotmpad cow 2604 Pl smpitabue H DU 5S o s oot ol adh e agh! SACTESS Topm FEG_IWIRD Largic 4, Dot 900
S rebaped na TBON Mrpflasp ahus - HEDUYS sfbvearatd i oot ol ek SUCIESS Typs PEC_TwIND. Langh 4, Des 0
I ratepad s JFTH Foplamplshin HOTTIN sisas'od innin it budedioes SINTFRS Tiqi FET_TTWRIAN | oot & Dty 1
Sl ranged ot TH00 Peoll alsken TS Shassd i \Rhoksouf e e SCIESS Tyt FEG MWIAD Lactt . Dty 0
o roferd e RN Pl gttt - HIC '3 Whnbied inacmndt Poss o horid SICTESS Tope FEG_IMWIRAD, Lengdh 4. Dy
3 et CEM Pl e b HIGL S MR ol s P v BUCLET T FEG_TwiIRL Lorghe 4. Dy |
F rotwprd pon SR Fagllam gy HICDU U sftonsec) ol APl scf B Sy Prporon ACTES Tope: FEG_DP0AD, Lorge ¢, Digtr 2
 ratupad oo M Forpilsorptaten - HE DS i bveaca S Enomd A bobpach 0k sy S CTESS Topar FEG_ IR, Langlv 4 Diatw 2
o rotwpad oo JEON Fupll sep ios - DU S dvecsa' ool Adcbep s i BcrdneF sy SICTESS Topa REG_ WAL Largle ., Do 43
i rbapad coe JO04 MHgfaiabiar (KLU houstl iusarbon D dudf ol SCITEs Diacaed Broals Wasnesn dlrid, Dimndid s ceta S Ascail
3 rabwpad s TROH Penllenplishes HBL UG IF TtA By i Blobusd T eds ks el s SLICIESS Tiper PEG_ST. Ly 300, Dby Lk Doweaclle:
:'-’-i-eﬂ-d e TEDH P sl Wfl" Vi O TR M ot R T eyl Pl SUCTESS Tvpe FEG_[MWIAD Large . Dty 700
“'ﬂﬂﬂ!-iﬂ Paiflvedimy — HB] A3 DF TWOSAE ' inpsnl Moo T eyl el SLCTESS
S0 ol] A5 3 00 27,3248 gatevn 200 Ech e bip potee Tl

6. Finally, double-click the highlighted line. Process Monitor will execute Regedit (if it’s not
already running) and cause it to navigate to and select the Notepadreferenced registry value.

Process Monitor Troubleshooting Techniques

Two basic Process Monitor troubleshooting techniques are effective for discovering the cause
of registry-related application or system problems:

m Look at the last thing in the Process Monitor trace that the application did before it failed.
This action might point to the problem.

m Compare a Process Monitor trace of the failing application with a trace from a working
system.

To follow the first approach, run Process Monitor and then run the application. At the point
the failure occurs, go back to Process Monitor and stop the logging (by pressing Ctrl+E). Then go

259

to the end of the log and find the last operations performed by the application before it failed (or
crashed, hung, or whatever). Starting with the last line, work your way backward, examining the
files, registry keys, or both that were referenced—often this will help pinpoint the problem.

Use the second approach when the application fails on one system but works on another.
Capture a Process Monitor trace of the application on the working and failing systems, and save
the output to a log file. Then open the good and bad log files with Microsoft Excel (accepting the
defaults in the Import wizard), and delete the first three columns. (If you don’t delete the first
three columns, the comparison will show every line as different because the first three columns
contain information that is different from run to run, such as the time and the process ID.) Finally,
compare the resulting log files. (You can do this by using WinDiff, which is included in the
Windows SDK).

Entries in a Process Monitor trace that have values of NAME NOT FOUND or ACCESS
DENIED in the Result column are ones that you should investigate. NAME NOT FOUND is
reported when an application attempts to read from a registry key or value that doesn’t exist. In
many cases, a missing key or value is innocuous because a process that fails to read a setting from
the registry simply falls back on default values. In some cases, however, applications expect to
find values for which there is no default and will fail if they are missing.

Access-denied errors are a common source of registry-related application failures and occur
when an application doesn’t have permission to access a key the way that it wants. Applications
that do not validate registry operation results or perform proper error recovery will fail.

A common result string that might appear suspicious is BUFFER OVERFLOW. It does not
indicate a buffer-overflow exploit in the application that receives it. Instead, it’s used by the
configuration manager to inform an application that the buffer it specified to store a registry value
is too small to hold the value. Application developers often take advantage of this behavior to
determine how large a buffer to allocate to store a value. They first perform a registry query with a
0-length buffer that returns a buffer-overflow error and the length of the data it attempted to read.
The application then allocates a buffer of the indicated size and rereads the value. You should
therefore see operations that return BUFFER OVERFLOW repeat with a successful result.

In one example of Process Monitor being used to troubleshoot a real problem, it saved a user
from doing a complete reinstall of his Windows system. The symptom was that Internet Explorer
would hang on startup if the user did not first manually dial the Internet connection. This Internet
connection was set as the default connection for the system, so starting Internet Explorer should
have caused an automatic dial-up to the Internet (because Internet Explorer was set to display a

default home page upon startup).

An examination of a Process Monitor log of Internet Explorer startup activity, going
backward from the point in the log where Internet Explorer hung, showed a query to a key under
HKCU\Software\Microsoft\RAS Phonebook. The user reported that he had previously uninstalled
the dialer program associated with the key and manually created the dial-up connection. Because
the dial-up connection name did not match that of the uninstalled dialer program, it appeared that
the key had not been deleted by the dialer’s uninstall program and that it was causing Internet
Explorer to hang. After the key was deleted, Internet Explorer functioned as expected.

260

Logging Activity in Unprivileged Accounts or During Logon/Logoff

A common application-failure scenario is that an application works when run in an account
that has Administrative group membership but not when run in the account of an unprivileged user.
As described earlier, executing Process Monitor requires security privileges that are not normally
assigned to standard user accounts, but you can capture a trace of applications executing in the
logon session of an unprivileged user by using the Runas command to execute Process Monitor in
an administrative account.

If a registry problem relates to account logon or logoff, you’ll also have to take special steps
to be able to use Process Monitor to capture a trace of those phases of a logon session.
Applications that are run in the local system account are not terminated when a user logs off, and
you can take advantage of that fact to have Process Monitor run through a logoff and subsequent
logon. You can launch Process Monitor in the local system account either by using the At
command that’s built into Windows and specifying the /interactive flag, or by using the

Sysinternals PsExec utility, like this:

1. psexec -1 0 -s -d c:\procmon.exe

The —i switch directs PsExec to have Process Monitor’s window appear on the interactive
console, the —s switch has PsExec run Process Monitor in the local system account, and the —d
switch has PsExec launch Process Monitor and exit without waiting for Process Monitor to
terminate. When you execute this command, the instance of Process Monitor that executes will
survive logoff and reappear on the desktop when you log back on, having captured the registry

activity of both actions.

Another way to monitor registry activity during the logon, logoff, boot, or shutdown process
is to use the Process Monitor log boot feature, which you can enable by selecting Log Boot on the
Options menu. The next time you boot the system, the Process Monitor device driver logs registry
activity from early in the boot to %SystemRoot%\Procmon.pml. It will continue logging to that
file until disk space runs out, the system shuts down, or you run Process Monitor. A log file
storing a registry trace of startup, logon, logoff, and shutdown on a Windows system will typically
be between 50 and 150 MB in size.

261

RICCARDO
StrikeOut

