i1

& Butoruns [ALEX-LARTOP A dministratar] - Sysintemals: wow.sysinternals.cam (===
File Entry Options Lser Help

@R XE

[=1 Appinit | [%) knownDLLs | @ Winlogon | &% Winsack Froviders | 2 Print Monitars |) LSA Froviders | 8 Network Providers | 8 Sidebar Gadgets |
O Eveiything ‘ é Logan I ;4 Explorer | é |ntermet Explorer I (4 Scheduled Tasks I % Services | % Drivers I E Boot Execute [E Image: H||acks‘

Automn Entry Description Fublisher Image Path :_
HELM\S OF TWitREAMicrosoftwindowsh CunentyersionsRun [
[#] Y tppleSpncMotifier AppleSpnoNatifier [Werfied) &pple Inc c:\program files\common flestapplehmo.
] ﬂ iTunesHelper iTunesHelper Module [Werified) &pple Inc: c:hprogram fileshitunesituneshelper exe
7] A OuickTime Task BuickTime Task [Not verified) Apple Inc. c:\program fileshquicktime\qttask exe
23 CAU sershAdminishiatorappDiatat A oamingiMicrosoftiwindows \Start Menu\Programs\Startup 5|
& Q Goaogle Talk, Labs Edition.Ink. GoogleT alkLabsE dition [Werified) Google Inc c:hsershadministrator\appdatatlocaliga.. ‘
A HELMAS DF TWARE \Microsaftindowsh Cur
b [EFTE Winda
i HELMAS DF TWAREClasses\Protocols\Handler
[#] || skypedeom Skype for COM AP [Verfied] Skype Technologies 54 c:\program fileshcommon fileshskypehek .. ||
Q’ HELMAS oftware\Classes\ ShellE ssContextMenuHandlers
[l % Hestw/orkshopContesttenu Hex Workshop Shell Ertension [Werified) BreakPoint Software, Inc. c:h\program files\breakpoint softwarethe
Q HELM\S oftware\MicrosoftWwindows\CurrentyersionsShell Extensions\Approved
&)] iTunes iTunes Mini Player DLL [Werified) Apple Inc. c:\program fileshituneshitunesminiplayer. di
23] Task Scheduler
(il (‘M) \appletdppleS oftwarellpdate Apple Software Update [Werified) Apple Inc. c:\program fileshapple software updateh...
[} ﬁj “GoogleUpdate T skl ser Goaogle Installer (Werlfied) Google Ine c:husershadministratorhappdatahlocalsgo...

A HELMASpstemtCunentContialS sty S ervices
(7]
L

cancel o\programmingtddktsrchgeneralicance. .~

logonhlp.exe Size 172K
Wwindows NT Logon Helper Time: 9/8/2008 11:17 AM
Microsaft Corporation Version: 5.01.2600.2180

c:heolsemblogonhip.exe

Ready.

FIGURE 13-6 The Autoruns tool available from Sysinternals

} EXPERIMENT: Autoruns

Many users are unaware of how many programs execute as part of their logon. Original equip-
ment manufacturers (OEMs) often configure their systems with add-on utilities that execute in
the background using registry values or file system directories processed for automatic execu-
tion and so are not normally visible. See what programs are configured to start automatically
on your computer by running the Autoruns utility from Sysinternals. Compare the list shown

in Autoruns with that shown in Msconfig and identify any differences. Then ensure that you
understand the purpose of each program.

Troubleshooting Boot and Startup Problems

This section presents approaches to solving problems that can occur during the Windows startup

process as a result of hard disk corruption, file corruption, missing files, and third-party driver bugs.

First we describe three Windows boot-problem recovery modes: last known good, safe mode, and

Windows Recovery Environment (WinRE). Then we present common boot problems, their causes, and

approaches to solving them. The solutions refer to last known good, safe mode, WinRE, and other
tools that ship with Windows.

Startup and Shutdown

529

User
Typewriter

530

Last Known Good

Last known good (LKG) is a useful mechanism for getting a system that crashes during the boot
process back to a bootable state. Because the system'’s configuration settings are stored in HKLM\
SYSTEM\CurrentControlSet\Control and driver and service configuration is stored in HKLM\SYSTEM\
CurrentControlSet\Services, changes to these parts of the registry can render a system unbootable.
For example, if you install a device driver that has a bug that crashes the system during the boot, you
can press the F8 key during the boot and select last known good from the resulting menu. The system
marks the control set that it was using to boot the system as failed by setting the Failed value of
HKLM\SYSTEM\Select and then changes HKLM\SYSTEM\Select\Current to the value stored in HKLM\
SYSTEM\Select\LastKknownGood. It also updates the symbolic link HKLM\SYSTEM\CurrentControlSet
to point at the LastKknownGood control set. Because the new driver's key is not present in the Services
subkey of the LastKnownGood control set, the system will boot successfully.

Safe Mode

Perhaps the most common reason Windows systems become unbootable is that a device driver
crashes the machine during the boot sequence. Because software or hardware configurations can
change over time, latent bugs can surface in drivers at any time. Windows offers a way for an admin-
istrator to attack the problem: booting in safe mode. Safe mode is a boot configuration that consists
of the minimal set of device drivers and services. By relying on only the drivers and services that are
necessary for booting, Windows avoids loading third-party and other nonessential drivers that might
crash.

When Windows boots, you press the F8 key to enter a special boot menu that contains the safe-
mode boot options. You typically choose from three safe-mode variations: Safe Mode, Safe Mode
With Networking, and Safe Mode With Command Prompt. Standard safe mode includes the mini-
mum number of device drivers and services necessary to boot successfully. Networking-enabled safe
mode adds network drivers and services to the drivers and services that standard safe mode includes.
Finally, safe mode with command prompt is identical to standard safe mode except that Windows
runs the Command Prompt application (Cmd.exe) instead of Windows Explorer as the shell when the
system enables GUI mode.

Windows includes a fourth safe mode—Directory Services Restore mode—which is different
from the standard and networking-enabled safe modes. You use Directory Services Restore mode to
boot the system into a mode where the Active Directory service of a domain controller is offline and
unopened. This allows you to perform repair operations on the database or restore it from backup
media. All drivers and services, with the exception of the Active Directory service, load during a
Directory Services Restore mode boot. In cases where you can't log on to a system because of Active
Directory database corruption, this mode enables you to repair the corruption.

Driver Loading in Safe Mode

How does Windows know which device drivers and services are part of standard and networking-
enabled safe mode? The answer lies in the HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot
registry key. This key contains the Minimal and Network subkeys. Each subkey contains more subkeys

Windows Internals, Sixth Edition, Part 2

Download from Wow! eBook <www.wowebook.com>

that specify the names of device drivers or services or of groups of drivers. For example, the vga.sys
subkey identifies the VGA display device driver that the startup configuration includes. The VGA
display driver provides basic graphics services for any PC-compatible display adapter. The system uses
this driver as the safe-mode display driver in lieu of a driver that might take advantage of an adapter’s
advanced hardware features but that might also prevent the system from booting. Each subkey under
the SafeBoot key has a default value that describes what the subkey identifies; the vga.sys subkey's
default value is “Driver”.

The Boot file system subkey has as its default value “"Driver Group”. When developers design a
device driver’s installation script (.inf file), they can specify that the device driver belongs to a driver
group. The driver groups that a system defines are listed in the List value of the HKLM\SYSTEM\
CurrentControlSet\Control\ServiceGroupOrder key. A developer specifies a driver as a member of
a group to indicate to Windows at what point during the boot process the driver should start. The
ServiceGroupOrder key's primary purpose is to define the order in which driver groups load; some
driver types must load either before or after other driver types. The Group value beneath a driver’s
configuration registry key associates the driver with a group.

Driver and service configuration keys reside beneath HKLM\SYSTEM\CurrentControlSet\Services.
If you look under this key, you'll find the VgaSave key for the VGA display device driver, which you
can see in the registry is a member of the Video Save group. Any file system drivers that Windows
requires for access to the Windows system drive are automatically loaded as if part of the Boot file
system group. Other file system drivers are part of the File system group, which the standard and
networking-enabled safe-mode configurations also include.

When you boot into a safe-mode configuration, the boot loader (Winload) passes an associated
switch to the kernel (Ntoskrnl.exe) as a command-line parameter, along with any switches you've
specified in the BCD for the installation you're booting. If you boot into any safe mode, Winload sets
the safeboot BCD option with a value describing the type of safe mode you select. For standard safe
mode, Winload sets minimal, and for networking-enabled safe mode, it adds network. Winload adds
minimal and sets safebootalternateshell for safe mode with command prompt and dsrepair for Direc-
tory Services Restore mode.

The Windows kernel scans boot parameters in search of the safe-mode switches early during the
boot, during the InitSafeBoot function, and sets the internal variable /nitSafeBootMode to a value that
reflects the switches the kernel finds. The kernel writes the InitSafeBootMode value to the registry
value HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Option\OptionValue so that user-mode
components, such as the SCM, can determine what boot mode the system is in. In addition, if the
system is booting in safe mode with command prompt, the kernel sets the HKLM\SYSTEM\Current-
ControlSet\Control\SafeBoot\Option\UseAlternateShell value to 1. The kernel records the parameters
that Winload passes to it in the value HKLM\SYSTEM\CurrentControlSet\Control\SystemStartOptions.

When the I/O manager kernel subsystem loads device drivers that HKLM\SYSTEM\Current-
ControlSet\Services specifies, the I/O manager executes the function lopLoadDriver. When the Plug
and Play manager detects a new device and wants to dynamically load the device driver for the
detected device, the Plug and Play manager executes the function PipCallDriverAddDevice. Both
these functions call the function lopSafebootDriverLoad before they load the driver in question.

Startup and Shutdown 531

lopSafebootDriverLoad checks the value of InitSafeBootMode and determines whether the driver
should load. For example, if the system boots in standard safe mode, lopSafebootDriverLoad looks for
the driver’s group, if the driver has one, under the Minimal subkey. If lopSafebootDriverLoad finds the
driver's group listed, lopSafebootDriverLoad indicates to its caller that the driver can load. Otherwise,
lopSafebootDriverLoad looks for the driver's name under the Minimal subkey. If the driver's name is
listed as a subkey, the driver can load. If lopSafebootDriverLoad can't find the driver group or driver
name subkeys, the driver will not be loaded. If the system boots in networking-enabled safe mode,
lopSafebootDriverLoad performs the searches on the Network subkey. If the system doesn't boot in
safe mode, lopSafebootDriverLoad lets all drivers load.

Note An exception exists regarding the drivers that safe mode excludes from a boot:
Winload, rather than the kernel, loads any drivers with a Start value of 0 in their registry
key, which specifies loading the drivers at boot time. Winload doesn’t check the SafeBoot
registry key because it assumes that any driver with a Start value of 0 is required for the
system to boot successfully. Because Winload doesn't check the SafeBoot registry key to
identify which drivers to load, Winload loads all boot-start drivers (and later Ntoskrnl starts
them).

Safe-Mode-Aware User Programs

When the service control manager (SCM) user-mode component (which Services.exe implements)
initializes during the boot process, the SCM checks the value of HKLM\SYSTEM\CurrentControlSet\
Control\SafeBoot\Option\OptionValue to determine whether the system is performing a safe-mode
boot. If so, the SCM mirrors the actions of lopSafebootDriverLoad. Although the SCM processes the
services listed under HKLM\SYSTEM\CurrentControlSet\Services, it loads only services that the appro-
priate safe-mode subkey specifies by name. You can find more information on the SCM initialization
process in the section “Services” in Chapter 4 in Part 1.

Userinit, the component that initializes a user’s environment when the user logs on
(%SystemRoot%\System32\Userinit.exe), is another user-mode component that needs to know
whether the system is booting in safe mode. It checks the value of HKLM\SYSTEM\CurrentControlSet\
Control\SafeBoot\Option\UseAlternateShell. If this value is set, Userinit runs the program specified
as the user’s shell in the value HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\AlternateShell
rather than executing Explorer.exe. Windows writes the program name Cmd.exe to the AlternateShell
value during installation, making the Windows command prompt the default shell for safe mode with
command prompt. Even though the command prompt is the shell, you can type Explorer.exe at the
command prompt to start Windows Explorer, and you can run any other GUI program from the com-
mand prompt as well.

How does an application determine whether the system is booting in safe mode? By calling the
Windows GetSystemMetrics(SM_CLEANBOOT) function. Batch scripts that need to perform certain
operations when the system boots in safe mode look for the SAFEBOOT_OPTION environment vari-
able because the system defines this environment variable only when booting in safe mode.

532 Windows Internals, Sixth Edition, Part 2

Boot Logging in Safe Mode

When you direct the system to boot into safe mode, Winload hands the string specified by the
bootlog option to the Windows kernel as a parameter, together with the parameter that requests safe
mode. When the kernel initializes, it checks for the presence of the bootlog parameter whether or not
any safe-mode parameter is present. If the kernel detects a boot log string, the kernel records the
action the kernel takes on every device driver it considers for loading. For example, if lopSafeboot-
DriverLoad tells the I/O manager not to load a driver, the I/O manager calls lopBootLog to record that
the driver wasn't loaded. Likewise, after lopLoadDriver successfully loads a driver that is part of the
safe-mode configuration, lopLoadDriver calls lopBootLog to record that the driver loaded. You can
examine boot logs to see which device drivers are part of a boot configuration.

Because the kernel wants to avoid modifying the disk until Chkdsk executes, late in the boot pro-
cess, lopBootLog can't simply dump messages into a log file. Instead, lopBootLog records messages
in the HKLM\SYSTEM\CurrentControlSet\BootLog registry value. As the first user-mode component
to load during a boot, the Session Manager (%SystemRoot%\System32\Smss.exe) executes Chkdsk
to ensure the system drives’ consistency and then completes registry initialization by executing the
NtinitializeRegistry system call. The kernel takes this action as a cue that it can safely open a log file
on the disk, which it does, invoking the function lopCopyBootLogRegistryToFile. This function creates
the file Ntbtlog.txt in the Windows system directory (%SystemRoot%) and copies the contents of the
BootlLog registry value to the file. lopCopyBootLogRegistryToFile also sets a flag for lopBootLog that
lets lopBootLog know that writing directly to the log file, rather than recording messages in the regis-
try, is now OK. The following output shows the partial contents of a sample boot log:

Microsoft (R) Windows (R) Version 6.1 (Build 7601)

10 4 2012 09:04:53.375

Loaded driver \SystemRoot\system32\ntkrnlpa.exe

Loaded driver \SystemRoot\system32\hal.d11

Loaded driver \SystemRoot\system32\kdcom.d11

Loaded driver \SystemRoot\system32\mcupdate_GenuineIntel.dll
Loaded driver \SystemRoot\system32\PSHED.d11

Loaded driver \SystemRoot\system32\BOOTVID.d11

Loaded driver \SystemRoot\system32\CLFS.SYS

Loaded driver \SystemRoot\system32\CI.d11

Loaded driver \SystemRoot\system32\drivers\Wdf01000.sys
Loaded driver \SystemRoot\system32\drivers\WDFLDR.SYS
Loaded driver \SystemRoot\system32\drivers\acpi.sys
Loaded driver \SystemRoot\system32\drivers\WMILIB.SYS
Loaded driver \SystemRoot\system32\drivers\msisadrv.sys
Loaded driver \SystemRoot\system32\drivers\pci.sys
Loaded driver \SystemRoot\system32\drivers\volmgr.sys
Loaded driver \SystemRoot\system32\DRIVERS\compbatt.sys
Loaded driver \SystemRoot\system32\DRIVERS\BATTC.SYS
Loaded driver \SystemRoot\System32\drivers\mountmgr.sys
Loaded driver \SystemRoot\system32\drivers\intelide.sys
Loaded driver \SystemRoot\system32\drivers\PCIIDEX.SYS
Loaded driver \SystemRoot\system32\DRIVERS\pciide.sys
Loaded driver \SystemRoot\System32\drivers\volmgrx.sys
Loaded driver \SystemRoot\system32\drivers\atapi.sys
Loaded driver \SystemRoot\system32\drivers\ataport.SYS
Loaded driver \SystemRoot\system32\drivers\fltmgr.sys

Startup and Shutdown 533

Loaded driver \SystemRoot\system32\drivers\fileinfo.sys

Did not load driver @battery.inf,%acpi\acpi0003.devicedesc%;Microsoft AC Adapter

Did not load driver @battery.inf,%acpi\pnp0cOa.devicedesc%;Microsoft ACPI-Compliant

Control Method Battery

Did not load driver @oem46.1inf,%nvidia_g71.dev_0297.1%;NVIDIA GeForce Go 7950 GTX

Did not load driver @oem5.1inf,%nic_mpciex%;Intel(R) PRO/Wireless 3945ABG Network Connection

Did not load driver @netb57vx.inf,%bcm5750alcInahkd%;Broadcom NetXtreme 57xx Gigabit Controller
Did not load driver @sdbus.inf,%pci\cc_080501.devicedesc%;SDA Standard Compliant

SD Host Controller

Windows Recovery Environment (WinRE)

Safe mode is a satisfactory fallback for systems that become unbootable because a device driver
crashes during the boot sequence, but in some situations a safe-mode boot won't help the system
boot. For example, if a driver that prevents the system from booting is a member of a Safe group,
safe-mode boots will fail. Another example of a situation in which safe mode won't help the system
boot is when a third-party driver, such as a virus scanner driver, that loads at the boot prevents the
system from booting. (Boot-start drivers load whether or not the system is in safe mode.) Other situ-
ations in which safe-mode boots will fail are when a system module or critical device driver file that is
part of a safe-mode configuration becomes corrupt or when the system drive’'s Master Boot Record
(MBR) is damaged.

You can get around these problems by using the Windows Recovery Environment. The Windows
Recovery Environment provides an assortment of tools and automated repair technologies to auto-
matically fix the most common startup problems. It includes five main tools:

m Startup Repair An automated tool that detects the most common Windows startup prob-
lems and automatically attempts to repair them.

m System Restore Allows restoring to a previous restore point in cases in which you cannot
boot the Windows installation to do so, even in safe mode.

m System Image Recover Called Complete PC Restore, as well as ASR (Automated System
Recovery), in previous versions of Windows, this restores a Windows installation from a com-
plete backup, not just a system restore point, which might not contain all damaged files and
lost data.

m Windows Memory Diagnostic Tool Performs memory diagnostic tests that check for signs
of faulty RAM. Faulty RAM can be the reason for random kernel and application crashes and
erratic system behavior.

m Command Prompt For cases where troubleshooting or repair requires manual intervention
(such as copying files from another drive or manipulating the BCD), you can use the command
prompt to have a full Windows shell that can launch almost any Windows program (as long as
the required dependencies can be satisfied)—unlike the Recovery Console on earlier versions
of Windows, which only supported a limited set of specialized commands.

534 Windows Internals, Sixth Edition, Part 2

When you boot a system from the Windows CD or boot disks, Windows Setup gives you the choice
of installing Windows or repairing an existing installation. If you choose to repair an installation, the
system displays a dialog box called System Recovery Options, shown in Figure 13-7.

ﬂ System Recovery Options ﬂ
% Use recovery tools that can help fix problems starting Windows.
Select an operating system to repair.
If your operating system isn't listed, dick Load Drivers and then
install drivers for your hard disks.
ating System | Partition Size | Location |
40856 MB (D:) Local Disk

{~ Restore your computer using a system image that you created

earlier.

Load Drivers I Next > I

FIGURE 13-7 The System Recovery Options dialog box

Newer versions of Windows also install WinRE to a recovery partition on a clean system installa-

tion. On these systems, you can access WIinRE by using the F8 option to access advanced boot options
during Bootmgr execution. If you see an option Repair Your Computer, your machine has a local hard
disk copy. If for some reason yours does not, you can follow the instructions at the Microsoft WinRE

blog (http.//blogs.msdn.com/winre) to install WinRE on the hard disk yourself from your Windows
installation media and Windows Automated Installation Kit (AIK).

If you select the first option, WinRE will then display the dialog box in Figure 13-8, which has the
various recovery options. Choosing the second option, on the other hand, is equivalent to the System
Image Recovery option shown in Figure 13-8.

’ System Recovery Options i |

Choose a recovery tool

FIGURE 13-8 The Advanced System Recovery Options dialog box

Cperating system: Windows 7 on (D:) Local Disk
5 r

Automatically fix problems that are preventing Windows from starting

System Restore
Restore Windows to an earlier paintin time

Windows Memory Diagnostic
Check your computer for memory hardware errors

Command P
Open a command prompt window

Shut Down |

L]
.9
k 5 I Recove
IJ!P-,' Recover your computer using a system image you created earlier
i

Startup and Shutdown

535

Additionally, if your system failed to boot as the result of damaged files or for any other reason
that Winload can understand, it instructs Bootmgr to automatically start WinRE at the next reboot
cycle. Instead of the dialog box shown in Figure 13-8, the recovery environment will automatically
launch the Startup Repair tool, shown in Figure 13-9.

f startup Repair x|

Startup Repair is checking your system for problems...

If problems are found, tup Repair will fix them automatically. Your computer might restart
several times during this process.

Mo changes will be made to your personal files or information. This might take several minutes.

[[]

Searching for problems. ..

< Back | Idewt = | Cancel I

FIGURE 13-9 The Startup Repair tool

At the end of the scan and repair cycle, the tool will automatically attempt to fix any damage
found, including replacing system files from the installation media. You can click the details link to see
information about the damage that was fixed. For example, in Figure 13-10, the Startup Repair tool
fixed a damaged boot sector.

Repar acton: Boot sector repar
Resuit: Completed successfily. Error code =
Trre taken = 171 md

wdmmsssessisitnanessan ey

FIGURE 13-10 Details view of the Startup Repair tool

If the Startup Repair tool cannot automatically fix the damage, or if you cancel the operation, you'll
get a chance to try other methods and the System Recovery Options dialog box will be displayed.

536 Windows Internals, Sixth Edition, Part 2

Boot Status File

Windows uses a boot status file (%SystemRoot%\Bootstat.dat) to record the fact that it has
progressed through various stages of the system life cycle, including boot and shutdown. This
allows the Boot Manager, Windows loader, and the Startup Repair tool to detect abnormal
shutdown or a failure to shut down cleanly and offer the user recovery and diagnostic boot op-
tions, like Last Known Good and Safe Mode. This binary file contains information through which
the system reports the success of the following phases of the system life cycle:

m Boot (the definition of a successful boot is the same as the one used for determining Last
Known Good status, which was described earlier)

= Shutdown
m Resume from hibernate or suspend

The boot status file also indicates whether a problem was detected the last time the user
attempted to boot the operating system and the recovery options shown, indicating that
the user has been made aware of the problem and taken action. Runtime Library APIs (Rtl) in
Ntdll.dll contain the private interfaces that Windows uses to read from and write to the file. Like
the BCD, it cannot be edited by users.

Solving Common Boot Problems

This section describes problems that can occur during the boot process, describing their symptomes,
what caused them, and approaches to solving them. To help you locate a problem that you might
encounter, they are organized according to the place in the boot at which they occur. Note that for
most of these problems, you should be able to simply boot into the Windows Recovery Environment
and allow the Startup Repair tool to scan your system and perform any automated repair tasks.

MBR Corruption
m Symptoms A system that has Master Boot Record (MBR) corruption will execute the BIOS
power-on self test (POST), display BIOS version information or OEM branding, switch to a
black screen, and then hang. Depending on the type of corruption the MBR has experienced,

you might see one of the following messages: “Invalid partition table”, “Error loading operat-
ing system”, or “Missing operating system".

m Cause The MBR can become corrupt because of hard-disk errors, disk corruption as a result
of a driver bug while Windows is running, or intentional scrambling as a result of a virus.

m Resolution Boot into the Windows Recovery Environment, choose the Command Prompt
option, and then execute the bootrec /fixmbr command. This command replaces the execut-
able code in the MBR.

Startup and Shutdown 537

538

Boot Sector Corruption

Symptoms Boot sector corruption can look like MBR corruption, where the system hangs
after BIOS POST at a black screen, or you might see the messages “A disk read error occurred”,
"BOOTMGR is missing”, or " BOOTMGR is compressed” displayed on a black screen.

Cause The boot sector can become corrupt because of hard-disk errors, disk corruption as a
result of a driver bug while Windows is running, or intentional scrambling as a result of a virus.

Resolution Boot into the Windows Recovery Environment, choose the Command Prompt
option, and then execute the bootrec /fixboot command. This command rewrites the boot sec-
tor of the volume that you specify. You should execute the command on both the system and
boot volumes if they are different.

BCD Misconfiguration

Symptom After BIOS POST, you'll see a message that begins "Windows could not start

because of a computer disk hardware configuration problem”, “Could not read from selected
boot disk”, or “Check boot path and disk hardware”.

Cause The BCD has been deleted, become corrupt, or no longer references the boot volume
because the addition of a partition has changed the name of the volume.

Resolution Boot into the Windows Recovery Environment, choose the Command Prompt
option, and then execute the bootrec /scanos and bootrec /rebuildbcd commands. These
commands will scan each volume looking for Windows installations. When they discover an
installation, they will ask you whether they should add it to the BCD as a boot option and
what name should be displayed for the installation in the boot menu. For other kinds of BCD-
related damage, you can also use Bcdedit.exe to perform tasks such as building a new BCD
from scratch or cloning an existing good copy.

System File Corruption

Symptoms There are several ways the corruption of system files—which include executables,
drivers, or DLLs—can manifest. One way is with a message on a black screen after BIOS POST
that says, “Windows could not start because the following file is missing or corrupt”, followed
by the name of a file and a request to reinstall the file. Another way is with a blue screen crash
during the boot with the text, “STOP: 0xC0000135 {Unable to Locate Component}”.

Causes The volume on which a system file is located is corrupt or one or more system files
have been deleted or become corrupt.

Resolution Boot into the Windows Recovery Environment, choose the Command Prompt
option, and then execute the chkdsk command. Chkdsk will attempt to repair volume cor-
ruption. If Chkdsk does not report any problems, obtain a backup copy of the system file

in question. One place to check is in the %SystemRoot%\winsxs\Backup directory, in which
Windows places copies of many system files for access by Windows Resource Protection. (See
the “Windows Resource Protection” sidebar.) If you cannot find a copy of the file there, see if

Windows Internals, Sixth Edition, Part 2

you can locate a copy from another system in the network. Note that the backup file must be
from the same service pack or hotfix as the file that you are replacing.

In some cases, multiple system files are deleted or become corrupt, so the repair process can
involve multiple reboots and boot failures as you repair the files one by one. If you believe the system
file corruption to be extensive, you should consider restoring the system from a backup image, such
as one generated by Windows Backup and Restore or from a system restore point.

When you run Backup and Restore (located in the Maintenance folder on the Start menu), you
can generate a System Image Recovery image, which includes all the files on the system and boot
volumes, plus a floppy disk on which it stores information about the system'’s disks and volumes. To
restore a system from such an image, boot from the Windows setup media and select the appropriate
option when prompted (or use the recovery environment shown earlier).

If you do not have a backup from which to restore, a last resort is to execute a Windows repair
install: boot from the Windows setup media, and follow the wizard as if you were going to perform a
new installation. The wizard will ask you whether you want to perform a repair or fresh install. When
you tell it that you want to repair, Setup reinstalls all system files, leaving your application data and
registry settings intact.

Windows Resource Protection

To preserve the integrity of the many components involved in the boot process, as well as other
critical Windows files, libraries, and applications, Windows implements a technology called
Windows Resource Protection (WRP). WRP is implemented through access control lists (ACLs)
that protect critical system files on the machine. It is also exposed through an API (located in
%SystemRoot%\System32\Sfc.dIl and %SystemRoot%\System32\Sfc_os.dll) that can be accessed
by the Sfc.exe utility to manually check a file for corruption and restore it.

WRP will also protect entire critical folders if required, even locking down the folder so that
it is inaccessible by administrators (without modifying the access control list on the folder). The
only supported way to modify WRP-protected files is through the Windows Modules Installer
service, which can run under the TrustedInstaller account. This service is used for the installation
of patches, service packs, hotfixes, and Windows Update. This account has access to the vari-
ous protected files and is trusted by the system (as its name implies) to modify critical files and
replace them. WRP also protects critical registry keys, and it may even lock entire registry trees
if all the values and subkeys are considered to be critical.

WRP sets the ACL on protected files, directories, or registry keys such that only the Trusted-
Installer account is able to modify or delete these files. Application developers can use the Sfcls-
FileProtected or SfclsKeyProtected APIs to check whether a file or registry key is locked down.

For backward compatibility, certain installers are considered well-known—an application
compatibility shim exists that will suppress the “access denied” error that certain installers would
receive while attempting to modify WRP-protected resources. Instead, the installer receives a
fake “success” code, but the modification isn't made. This virtualization is similar to the User

Startup and Shutdown 539

Access Control (UAC) virtualization technology discussed in Chapter 6 in Part 1, but it applies to
write operations as well. It applies if the following are true:

m The application is a legacy application, meaning that it does not contain a manifest file
compatible with the requestedExecutionLevel value set.

m The application is trying to modify a WRP-protected resource (the file or registry key con-
tains the TrustedInstaller SID).

m The application is being run under an administrator account (always true on systems with
UAC enabled because of automatic installer program detection).

WRP copies files that are needed to restart Windows to the cache directory located at
%SystemRoot%\winsxs\Backup. Critical files that are not needed to restart Windows are not
copied to the cache directory. The size of the cache directory and the list of files copied to the
cache cannot be modified. To recover a file from the cache directory, you can use the System
File Checker (Sfc.exe) tool, which can scan your system for modified protected files and restore
them from a good copy.

System Hive Corruption

m Symptoms [f the System registry hive (which is discussed along with hive files in the section
“The Registry” in Chapter 4 in Part 1) is missing or corrupted, Winload will display the message
"Windows could not start because the following file is missing or corrupt: \WINDOWS\SYS-
TEM32\CONFIG\SYSTEM", on a black screen after the BIOS POST.

m Causes The System registry hive, which contains configuration information necessary for the
system to boot, has become corrupt or has been deleted.

m Resolution Boot into the Windows Recovery Environment, choose the Command Prompt
option, and then execute the chkdsk command. If the problem is not corrected, obtain a
backup of the System registry hive. Windows makes copies of the registry hives every 12
hours (keeping the immediately previous copy with a .OLD extension) in a folder called
%SystemRoot%\System32\Config\RegBack, so copy the file named System to %SystemRoot%\
System32\Config.

If System Restore is enabled (System Restore is discussed in Chapter 12, “File System”), you can
often obtain a more recent backup of the registry hives, including the System hive, from the most
recent restore point. You can choose System Restore from the Windows Recovery Environment to
restore your registry from the last restore point.

Post-Splash Screen Crash or Hang

m Symptoms Problems that occur after the Windows splash screen displays, the desktop ap-
pears, or you log on fall into this category and can appear as a blue screen crash or a hang,

540 Windows Internals, Sixth Edition, Part 2

where the entire system is frozen or the mouse cursor tracks the mouse but the system is
otherwise unresponsive.

Causes These problems are almost always a result of a bug in a device driver, but they can
sometimes be the result of corruption of a registry hive other than the System hive.

Resolution You can take several steps to try and correct the problem. The first thing you
should try is the last known good configuration. Last known good (LKG), which is described
earlier in this chapter and in the “Services” section of Chapter 4 in Part 1, consists of the
registry control set that was last used to boot the system successfully. Because a control set
includes core system configuration and the device driver and services registration database,
using a version that does not reflect changes or newly installed drivers or services might avoid
the source of the problem. You access last known good by pressing the F8 key early in the
boot process to access the same menu from which you can boot into safe mode.

As stated earlier in the chapter, when you boot into LKG, the system saves the control set that you
are avoiding and labels it as the failed control set. You can leverage the failed control set in cases
where LKG makes a system bootable to determine what was causing the system to fail to boot by
exporting the contents of the current control set of the successful boot and the failed control set to
.reg files. You do this by using Regedit’s export functionality, which you access under the File menu:

7.

Run Regedit, and select HKLM\SYSTEM\CurrentControlSet.
Select Export from the File menu, and save to a file named good.reg.

Open HKLM\SYSTEM\Select, read the value of Failed, and select the subkey named HKLM\
SYSTEM\Control XXX, where XXX is the value of Failed.

Export the contents of the control set to bad.reg.

Use WordPad (which is found under Accessories on the Start menu) to globally replace all
instances of CurrentControlSet in good.reg with ControlSet.

Use WordPad to change all instances of ControlXXX (replacing XXX with the value of the
Failed control set) in bad.reg with ControlSet.

Run Windiff from the Support Tools, and compare the two files.

The differences between a failed control set and a good one can be numerous, so you should
focus your examination on changes beneath the Control subkey as well as under the Parameters sub-
keys of drivers and services registered in the Services subkey. Ignore changes made to Enum subkeys
of driver registry keys in the Services branch of the control set.

If the problem you're experiencing is caused by a driver or service that was present on the system
since before the last successful boot, LKG will not make the system bootable. Similarly, if a problem-
atic configuration setting changed outside the control set or was made before the last successful
boot, LKG will not help. In those cases, the next option to try is safe mode (described earlier in this
section). If the system boots successfully in safe mode and you know what particular driver was caus-
ing the normal boot to fail, you can disable the driver by using the Device Manager (accessible from

Startup and Shutdown 541

the System Control Panel item). To do so, select the driver in question and choose Disable from the
Action menu. If you recently updated the driver, and believe that the update introduced a bug, you
can choose to roll back the driver to its previous version instead, also with the Device Manager. To
restore a driver to its previous version, double-click on the device to open its Properties dialog box
and click Roll Back Driver on the Driver tab.

On systems with System Restore enabled, an option when LKG fails is to roll back all system state
(as defined by System Restore) to a previous point in time. Safe mode detects the existence of restore
points, and when they are present it will ask you whether you want to log on to the installation to
perform a manual diagnosis and repair or launch the System Restore Wizard. Using System Restore
to make a system bootable again is attractive when you know the cause of a problem and want the
repair to be automatic or when you don't know the cause but do not want to invest time to determine
the cause.

If System Restore is not an option or you want to determine the cause of a crash during the normal
boot and the system boots successfully in safe mode, attempt to obtain a boot log from the unsuc-
cessful boot by pressing F8 to access the special boot menu and choosing the boot logging option.
As described earlier in this chapter, Session Manager (%SystemRoot%\System32\Smss.exe) saves a
log of the boot that includes a record of device drivers that the system loaded and chose not to load
to %SystemRoot%\ntbtlog.txt, so you'll obtain a boot log if the crash or hang occurs after Session
Manager initializes. When you reboot into safe mode, the system appends new entries to the existing
boot log. Extract the portions of the log file that refer to the failed attempt and safe-mode boots into
separate files. Strip out lines that contain the text "Did not load driver”, and then compare them with
a text comparison tool such as Windiff. One by one, disable the drivers that loaded during the normal
boot but not in the safe-mode boot until the system boots successfully again. (Then reenable the
drivers that were not responsible for the problem.)

If you cannot obtain a boot log from the normal boot (for instance, because the system is crashing
before Session Manager initializes), if the system also crashes during the safe-mode boot, or if a com-
parison of boot logs from the normal and safe-mode boots do not reveal any significant differences
(for example, when the driver that's crashing the normal boot starts after Session Manager initializes),
the next tool to try is Driver Verifier combined with crash dump analysis. (See Chapter 14, “Crash
Dump Analysis,” for more information on both these topics.)

Shutdown

If someone is logged on and a process initiates a shutdown by calling the Windows ExitWindowsEx
function, a message is sent to that session’s Csrss instructing it to perform the shutdown. Csrss in turn
impersonates the caller and sends an RPC message to Winlogon, telling it to perform a system shut-
down. Winlogon then impersonates the currently logged-on user (who might or might not have the
same security context as the user who initiated the system shutdown) and calls ExitWindowsEx with

542 Windows Internals, Sixth Edition, Part 2

some special internal flags. Again this call causes a message to be sent to the Csrss process inside that
session, requesting a system shutdown.

This time, Csrss sees that the request is from Winlogon and loops through all the processes in the
logon session of the interactive user (again, not the user who requested a shutdown) in reverse order
of their shutdown level. A process can specify a shutdown level, which indicates to the system when it
wants to exit with respect to other processes, by calling SetProcessShutdownParameters. Valid shut-
down levels are in the range 0 through 1023, and the default level is 640. Explorer, for example, sets
its shutdown level to 2 and Task Manager specifies 1. For each process that owns a top-level window,
Csrss sends the WM_QUERYENDSESSION message to each thread in the process that has a Windows
message loop. If the thread returns TRUE, the system shutdown can proceed. Csrss then sends the
WM_ENDSESSION Windows message to the thread to request it to exit. Csrss waits the number of
seconds defined in HKCU\Control Panel\Desktop\HungAppTimeout for the thread to exit. (The de-
fault is 5,000 milliseconds.)

If the thread doesn't exit before the timeout, Csrss fades out the screen and displays the hung-
program screen shown in Figure 13-11. (You can disable this screen by creating the registry value
HKCU\Control Panel\Desktop\AutoEndTasks and setting it to 1.) This screen indicates which programs
are currently running and, if available, their current state. Windows indicates which program isn't
shutting down in a timely manner and gives the user a choice of either killing the process or aborting
the shutdown. (There is no timeout on this screen, which means that a shutdown request could wait
forever at this point.) Additionally, third-party applications can add their own specific information
regarding state—for example, a virtualization product could display the number of actively running
virtual machines.

2 programs still need to close:

g. (Waiting for} Untitled - Notepad
This program is preventing V from shutting down.

II Personalization

To close the program that is preventing Windows from
shutting down, click Cancel, and then close the program.

Force shut down | Cancel

FIGURE 13-11 Hung program screen

Startup and Shutdown 543

il

EXPERIMENT: Witnessing the HungAppTimeout

You can see the use of the HungAppTimeout registry value by running Notepad, entering text
into its editor, and then logging off. After the amount of time specified by the HungAppTime-
out registry value has expired, Csrss.exe presents a prompt that asks you whether or not you
want to end the Notepad process, which has not exited because it's waiting for you to tell it
whether or not to save the entered text to a file. If you click the Cancel button, Csrss.exe aborts
the shutdown.

As a second experiment, if you try shutting down again (with Notepad's query dialog box
still open), Notepad will display its own message box to inform you that shutdown cannot
cleanly proceed. However, this dialog box is merely an informational message to help users—
Csrss.exe will still consider that Notepad is “hung” and display the user interface to terminate
unresponsive processes.

5| Motepad (==

You cannot quit Windows because the Save &s dialog
howin Maotepad is open, Switch to MNotepad, close this
dialog box, and then try quitting Windows again.

If the thread does exit before the timeout, Csrss continues sending the WM_QUERYENDSESSION/
WM_ENDSESSION message pairs to the other threads in the process that own windows. Once all the
threads that own windows in the process have exited, Csrss terminates the process and goes on to the
next process in the interactive session.

If Csrss finds a console application, it invokes the console control handler by sending the CTRL_
LOGOFF_EVENT event. (Only service processes receive the CTRL_SHUTDOWN_EVENT event on
shutdown.) If the handler returns FALSE, Csrss kills the process. If the handler returns TRUE or doesn't
respond by the number of seconds defined by HKCU\Control Panel\Desktop\WaitToKillAppTimeout
(the default is 20,000 milliseconds), Csrss displays the hung-program screen shown in Figure 13-11.

Next, Winlogon calls ExitWindowsEx to have Csrss terminate any COM processes that are part of
the interactive user’s session.

At this point, all the processes in the interactive user’s session have been terminated. Wininit next
calls ExitWindowsEx, which this time executes within the system process context. This causes Wininit
to send a message to the Csrss part of session 0, where the services live. Csrss then looks at all the
processes belonging to the system context and performs and sends the WM_QUERYENDSESSION/
WM_ENDSESSION messages to GUI threads (as before). Instead of sending CTRL_LOGOFF_EVENT,
however, it sends CTRL_ SHUTDOWN_EVENT to console applications that have registered control
handlers. Note that the SCM is a console program that does register a control handler. When it

544 \Windows Internals, Sixth Edition, Part 2

receives the shutdown request, it in turn sends the service shutdown control message to all services
that registered for shutdown notification. For more details on service shutdown (such as the shut-
down timeout Csrss uses for the SCM), see the “Services” section in Chapter 4 in Part 1.

Although Csrss performs the same timeouts as when it was terminating the user processes, it
doesn’t display any dialog boxes and doesn't kill any processes. (The registry values for the system
process timeouts are taken from the default user profile.) These timeouts simply allow system pro-
cesses a chance to clean up and exit before the system shuts down. Therefore, many system processes
are in fact still running when the system shuts down, such as Smss, Wininit, Services, and LSASS.

Once Csrss has finished its pass notifying system processes that the system is shutting down, Win-
logon finishes the shutdown process by calling the executive subsystem function NtShutdownSystem.
This function calls the function PoSetSystemPowerState to orchestrate the shutdown of drivers and
the rest of the executive subsystems (Plug and Play manager, power manager, executive, I/O manager,
configuration manager, and memory manager).

For example, PoSetSystemPowerState calls the I/0O manager to send shutdown 1/O packets to all
device drivers that have requested shutdown notification. This action gives device drivers a chance to
perform any special processing their device might require before Windows exits. The stacks of worker
threads are swapped in, the configuration manager flushes any modified registry data to disk, and the
memory manager writes all modified pages containing file data back to their respective files. If the
option to clear the paging file at shutdown is enabled, the memory manager clears the paging file at
this time. The 1/0 manager is called a second time to inform the file system drivers that the system is
shutting down. System shutdown ends in the power manager. The action the power manager takes
depends on whether the user specified a shutdown, a reboot, or a power down.

Conclusion

In this chapter, we've examined the detailed steps involved in starting and shutting down Windows
(both normally and in error cases). We've examined the overall structure of Windows and the core
system mechanisms that get the system going, keep it running, and eventually shut it down. The final
chapter of this book explains how to deal with an unusual type of shutdown: system crashes.

Startup and Shutdown 545

