14. Crash Dump Analysis

Almost every Windows user has heard of, if not experienced, the infamous “blue screen of
death.” This ominous term refers to the blue screen that is displayed when Windows crashes, or
stops executing, because of a catastrophic fault or an internal condition that prevents the system

from continuing to run.

In this chapter, we’ll cover the basic problems that cause Windows to crash, describe the
information presented on the blue screen, and explain the various configuration options available
to create a crash dump, a record of system memory at the time of a crash that can help you figure
out which component caused the crash and why. This section is not intended to provide detailed
troubleshooting information on how to analyze a Windows system crash. This section will also
show you how to analyze a crash dump to identify a faulty driver or component. The effort
required to perform basic crash dump analysis is minimal and takes a few minutes. Even if an
analysis ascertains the problematic driver for only one out of every five or ten crash dumps, it’s
still worth doing: one successful analysis can avoid future data loss, system downtime, and

frustration.

14.1 Why Does Windows Crash?

Windows crashes (stops execution and displays the blue screen) for many possible reasons. A
common source is a reference to a memory address that causes an access violation, either a write
operation to read-only memory or a read operation on an address that is not mapped. Another
common cause is an unexpected exception or trap. Crashes also occur when a kernel subsystem
(such as the memory manager and power manager) or a driver (such as a USB or display driver)

detect inconsistencies in their operation.

When a kernel-mode device driver or subsystem causes an illegal exception, Windows faces
a difficult dilemma. It has detected that a part of the operating system with the ability to access
any hardware device and any valid memory has done something it wasn’t supposed to do. But
why does that mean Windows has to crash? Couldn’t it just ignore the exception and let the device
driver or subsystem continue as if nothing had happened? The possibility exists that the error was
isolated and that the component will somehow recover. But what’s more likely is that the detected
exception resulted from deeper problems—for example, from a general corruption of memory or
from a hardware device that’s not functioning properly. Permitting the system to continue
operating would probably result in more exceptions, and data stored on disk or other peripherals
could become corrupt—a risk that’s too high to take. So Windows adopts a fail fast policy in
attempting to prevent the corruption in RAM from spreading to disk.

1008

14.2 The Blue Screen

Regardless of the reason for a system crash, the function that actually performs the crash is
KeBugCheckEx, documented in the Windows Driver Kit (WDK). This function takes a stop code
(sometimes called a bugcheck code) and four parameters that are interpreted on a per— stop code
basis. After KeBugCheckEx masks out all interrupts on all processors of the system, it switches
the display into a low-resolution VGA graphics mode (one implemented by all Windows-
supported video cards), paints a blue background, and then displays the stop code, followed by
some text suggesting what the user can do. Finally, KeBugCheckEx calls any registered device
driver bugcheck callbacks (registered by calling the KeRegisterBugCheckCallback function),
allowing drivers an opportunity to stop their devices. It then calls registered reason callbacks
(registered with KeRegisterBugCheckReasonCallback), which allow drivers to append data to the
crash dump or write crash dump information to alternate devices. (It’s possible that system data
structures have been so seriously corrupted that the blue screen isn’t displayed.) Figure 14-1
shows a sample Windows blue screen.

FIGURE 14-1 Example of a blue screen

KeBugCheckEx displays the textual representation of the stop code near the top of the blue
screen and the numeric stop code and four parameters at the bottom of the blue screen. The first
line in the Technical information section lists the stop code and the four additional parameters
passed to KeBugCheckEx. A text line near the top of the screen provides the text equivalent of the
stop code’s numeric identifier. According to the example in Figure 14-1, the stop code
0x000000D1 is a DRIVER IRQL NOT LESS OR EQUAL crash. When a parameter contains
an address of a piece of operating system or device driver code (as in Figure 14-1), Windows
displays the base address of the module the address falls in, the date stamp, and the file name of
the device driver. This information alone might help you pinpoint the faulty component.

Although there are more than 300 unique stop codes, most are rarely, if ever, seen on
production systems. Instead, just a few common stop codes represent the majority of Windows
system crashes. Also, the meaning of the four additional parameters depends on the stop code (and
not all stop codes have extended parameter information). Nevertheless, looking up the stop code

1009

and the meaning of the parameters (if applicable) might at least assist you in diagnosing the
component that is failing (or the hardware device that is causing the crash).

You can find stop code information in the section “Bug Checks (Blue Screens)” in the
Debugging Tools for Windows help file. (For information on the Debugging Tools for Windows,
see Chapter 1.) You can also search Microsoft’s Knowledge Base (http://support.microsoft.com)

for the stop code and the name of the suspect hardware or application. You might find information
about a workaround, an update, or a service pack that fixes the problem you’re having. The
Bugcodes.h file in the WDK contains a complete list of the 300 or so stop codes, with some
additional details on the reasons for some of them. Based on data collected from the release of
Windows Vista through the release of Windows Vista SP1, the top 30 stop codes account for 96
percent of crashes and can be grouped into a dozen categories:

m Page fault A page fault on memory backed by data in a paging file or a memorymapped file
occurs at an IRQL of DPC/dispatch level or above, which would require the memory manager to
have to wait for an I/O operation to occur. The kernel cannot wait or reschedule threads at an
IRQL of DPC/dispatch level or higher. (See Chapter 3 for details on IRQLs.) This category also
includes page faults in nonpaged areas. The common stop codes are:

1 0xA - IRQL_NOT LESS_OR_EQUAL
1 0xD1 - DRIVER _IRQL NOT LESS OR EQUAL

m Power management A device driver or an operating system function running in kernel
mode is in an inconsistent or invalid power state. Most frequently, some component has failed to
complete a power management I/O request operation within 10 minutes. This crash category is
new in Windows Vista. In previous versions of the Windows operating system, these failures
generally resulted in a system hang with no crash. The stop codes are:

[0x9F - DRIVER POWER STATE FAILURE
[J 0xAO - INTERNAL POWER ERROR

m Exceptions and traps A device driver or an operating system function running in kernel

mode incurs an unexpected exception or trap. The common stop codes are:
U 0x1E - KMODE EXCEPTION NOT HANDLED
[J 0x3B - SYSTEM_SERVICE_EXCEPTION
[0 0x7E - SYSTEM_THREAD EXCEPTION NOT HANDLED
[0 0x7F - UNEXPECTED KERNEL MODE TRAP

[0x8E - KERNEL MODE _EXCEPTION NOT HANDLED with P1 != 0xC0000005
STATUS_ACCESS_VIOLATION

m Access violations A device driver or an operating system function running in kernel mode
incurs a memory access violation, which is caused either by attempting to write to a read-only
page or by attempting to read an address that isn’t currently mapped and therefore is not a valid

memory location. The common stop codes are:

1010

[1 0x50 - PAGE FAULT IN NONPAGED AREA

[0x8E - KERNEL MODE_EXCEPTION NOT HANDLED with P1 = 0xC0000005
STATUS_ACCESS_VIOLATION

m Display The display device driver detects that it can no longer control the graphics
processing unit or detects an inconsistency in video memory management. The common stop

codes are:
[J OxEA - THREAD STUCK IN DEVICE DRIVER
[J 0x10E - VIDEO_ MEMORY_ MANAGEMENT INTERNAL
[0 0x116 - VIDEO _TDR FAILURE

m Pool The kernel pool manager detects an improper pool reference. The common stop codes
are:

1 0xC2 - BAD POOL CALLER
11 0xC5 - DRIVER._ CORRUPTED EXPOOL

m Memory management The kernel memory manager detects a corruption of memory
management data structures or an improper memory management request. The common stop

codes are:
[0 0x1A - MEMORY MANAGEMENT
[J 0x4E - PFN_LIST CORRUPT

m Consistency check This is a catch-all category for various other consistency checks

performed by the kernel or device drivers. The common stop codes are:
[0x18 - REFERENCE BY POINTER
[J 0x35 - NO_MORE IRP_STACK LOCATIONS
[1 0x44 - MULTIPLE IRP_COMPLETE REQUESTS

O 0xCE -
DRIVER UNLOADED WITHOUT CANCELLING PENDING OPERATIONS

[J 0x8086 — This is a stop code used by the Intel storage driver iastor.sys

m Hardware A hardware error, such as a machine check or a nonmaskable interrupt (NMI),
occurs. This category also includes disk failures when the memory manager is attempting to read
data to satisfy page faults. The common stop codes are:

L1 0x77 — KERNEL STACK INPAGE ERROR
[] 0x7A - KERNEL DATA INPAGE ERROR
[0x124 - WHEA UNCORRECTABLE ERROR

0 0x101 - CLOCK_WATCHDOG TIMEOUT (Software bugs can cause these errors too,

but they are most common on over-clocked hardware systems.)

1011

m USB An unrecoverable error occurs in a universal serial bus operation. The common stop

code is:
[J OxFE - BUGCODE USB_ DRIVER

m Critical object A fatal error occurs in a critical object without which Windows cannot

continue to run. The common stop code is:
[J O0xF4 - CRITICAL _OBJECT TERMINATION

m NTFS file system A fatal error is detected by the NTFS file system. The common stop code

is:
[1 0x24 - NTFS_FILE SYSTEM

Figure 14-2 shows the distribution of these categories for Windows Vista SP1 in September
2008:

Critical object,

23 LTES file sstemn
LISE, 27 % 1.5%

Hardware, 34% h
Citer, 4,00 ;

. Fage faul 206%

Consktency chack, 47% 4

Memory mansgemst,
45% |

Pool 555 |i

Power managenent,
17.4%
Dilsplay: 7.8%

i
Exception and trap T—

OLRSE Access vislation,
15.4%

FIGURE 14-2 Distribution of emor categories forwindows Vista SP1 as of September 2008,

14.3 Troubleshooting Crashes

You often begin seeing blue screens after you install a new software product or piece of
hardware. If you’ve just added a driver, rebooted, and gotten a blue screen early in system
initialization, you can reset the machine, press the F8 key when instructed, and then select Last
Known Good Configuration. Enabling last known good causes Windows to revert to a copy of the
registry’s device driver registration key (HKLM\SYSTEM\CurrentControlSet\ Services) from the
last successful boot (before you installed the driver). From the perspective of last known good, a
successful boot is one in which all services and drivers have finished loading and at least one
logon has succeeded. (Last known good is further described in Chapter 13.)

During the reboot after a crash, the Boot Manager (Bootmgr) will automatically detect that
Windows did not shut down properly and display a Windows Error Recovery message similar to
the one shown in Figure 14-3. This screen gives you the option to attempt booting into safe mode
so that you can disable or uninstall the software component that might be broken.

1012

Windivs Error Recovsry

wes 0id not shut
en was shut daoen

T the Zafe reo

with its cegular

FIGURE 14-2 An adample of & Winckows Error Recovary message

If you keep getting blue screens, an obvious approach is to uninstall the components you
added just before the first blue screen appeared. If some time has passed since you added
something new or you added several things at about the same time, you need to note the names of
the device drivers referenced in any of the parameters. If you recognize any of the names as being
related to something you just added (such as Storport.sys if you put on a new SCSI drive), you’ve
possibly found your culprit.

Many device drivers have cryptic names, but one approach you can take to figure out which
application or hardware device is associated with a name is to find out the name of the service in
the registry associated with a device driver by searching for the name of the device driver under
the HKLM\SYSTEM\CurrentControlSet\Services key. This branch of the registry is where
Windows stores registration information for every device driver in the system. If you find a match,
look for values named DisplayName and Description. Some drivers fill in these values to describe
the device driver’s purpose. For example, you might find the string “Virus Scanner” in the
DisplayName value, which can implicate the antivirus software you have running. The list of
drivers can be displayed in the System Information tool (from the Start menu, select Programs,
System Tools, System Information. In System Information, expand Software Environment, and
then select System Drivers. Process Explorer also lists the currently loaded drivers, including their
version numbers and load addresses, in the DLL view of the System process. Another option is to
open the Properties dialog box for the driver file and examine the information on the Details tab,
which often contains the description and company information for the driver. Keep in mind that
the registry information and file description are provided by the driver manufacturer, and there is
nothing to guarantee their accuracy.

More often than not, however, the stop code and the four associated parameters aren’t enough
information to troubleshoot a system crash. For example, you might need to examine the
kernel-mode call stack to pinpoint the driver or system component that triggered the crash. Also,
because the default behavior on Windows systems is to automatically reboot after a system crash,
it’s unlikely that you would have time to record the information displayed on the blue screen. That

1013

is why, by default, Windows attempts to record information about the system crash to the disk for
later analysis, which takes us to our next topic, crash dump files.

14.4 Crash Dump Files

By default, all Windows systems are configured to attempt to record information about the
state of the system when the system crashes. You can see these settings by opening the System
tool in Control Panel, clicking the Advanced tab in the System Properties dialog box, and then
clicking the Settings button under Startup And Recovery. The default settings for a Windows
system are shown in Figure 14-4.

P . -
Searbispund Racoeery B
SiEnse S0
st opuarat g ke
{Mromaf; Wirdawy Sarvar J006 -

T Tt despiary ok O ot fine] s sares 1 el st
| Thee L by (Roovery oplions When neededt |) Erd
Sywtars Fadrs

_\'_mw-:al- pesiinat]
Writa debupgins nfos mekion.

Lsrrad rmarma g =|

Do s
Sk atani OHENNY. [P

| Covatmariln ary acarling Fla

FIGURE 14-4 Crash durnp setlings

Three levels of information can be recorded on a system crash:

m Complete memory dump A complete memory dump contains all of physical memory at the
time of the crash. This type of dump requires that a page file be at least the size of physical
memory plus 1 MB for the header. Device drivers can take advantage of up to 256 MB for device
dump data, but the additional space is not required for a header. Because it can require an
inordinately large page file on large memory systems, this type of dump file is the least common
setting. If the system has more than 2 GB of RAM, this option will be disabled in the UI, but you
can manually enable it by setting the CrashDumpEnabled value to 1 in the
HKLM\SYSTEM\CurrentControlSet\Control\CrashControl registry key. At initialization time,
Windows will check whether the page-file size is large enough for a complete dump and
automatically switch to creating a small memory dump if not. Large server systems might not
have space for a complete dump but may be able to dump useful information, so you can add the
IgnorePagefileSize value to the same registry key to have the system generate a dump file until it
runs out of space.

m Kernel memory dump A kernel memory dump contains only the kernel-mode read/write
pages present in physical memory at the time of the crash. This type of dump doesn’t contain
pages belonging to user processes. Because only kernel-mode code can directly cause Windows to
crash, however, it’s unlikely that user process pages are necessary to debug a crash. In addition, all
data structures relevant for crash dump analysis—including the list of running processes, stack of

1014

the current thread, and list of loaded drivers—are stored in nonpaged memory that saves in a
kernel memory dump. There is no way to predict the size of a kernel memory dump because its
size depends on the amount of kernel-mode memory allocated by the operating system and drivers
present on the machine. This is the default setting for both Windows Vista and Windows Server
2008.

m Small memory dump A small memory dump, which is typically between 128 KB and 1
MB in size and is also called a minidump or triage dump, contains the stop code and parameters,
the list of loaded device drivers, the data structures that describe the current process and thread
(called the EPROCESS and ETHREAD—described in Chapter 5), the kernel stack for the thread
that caused the crash, and additional memory considered potentially relevant by crash dump
heuristics, such as the pages referenced by processor registers that contain memory addresses and
secondary dump data added by drivers.

Note Device drivers can register a secondary dump data callback routine by calling
KeRegisterBugCheckReasonCallback. The kernel invokes these callbacks after a crash and a
callback routine can add additional data to a crash dump file, such as device hardware memory or
device information for easier debugging. Up to 256 MB can be added systemwide by all drivers,
depending on the space required to store the dump and the size of the file into which the dump is
written, and each driver can add at most one-eighth of the available additional space. Once the

additional space is consumed, drivers subsequently called are not offered the chance to add data.

The debugger indicates that it has limited information available to it when it loads a
minidump, and basic commands like !process, which lists active processes, don’t have the data
they need. Here is an example of !process executed on a minidump:

Microsoft (R) Windows Debugger Version 6.10.0003.233 X86
Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\Windows\Minidump\Mini100108-01.dmp]
Mini Kernel Dump File: Only registers and stack trace are available

0: kd> !process 0 0

%* NT ACTIVE PROCESS DUMP **
GetPointerFromAddress: unable to read from 81d3a86¢
Error in reading nt! EPROCESS at 00000000

NG N o o

A kernel memory dump includes more information, but switching to a different process’s address
space mappings won’t work because required data isn’t in the dump file. Here is an example of the

debugger loading a kernel memory dump, followed by an attempt to switch process address

spaces:

1. Microsoft (R) Windows Debugger Version 6.10.0003.233 X86

2. Copyright (c) Microsoft Corporation. All rights reserved.

3. Loading Dump File [C:\Windows\MEMORY .DMP]

4. Kernel Summary Dump File: Only kernel address space is available
5. .

6. 0: kd> !process 0 0 explorer.exe

1015

7. PROCESS 867250a8 ...
8. 0: kd> .process 867250aS8 ...
9. Process 867250a8 has invalid page directories

While a complete memory dump is a superset of the other options, it has the drawback that its
size tracks the amount of physical memory on a system and can therefore become unwieldy. It’s
not unusual for systems today to have several gigabytes of memory, resulting in crash dump files
that are too large to be uploaded to an FTP server or burned onto a CD. Because user-mode code
and data are not used during the analysis of most crashes (because crashes originate as a result of
problems in kernel memory, and system data structures reside in kernel memory) much of the data
stored in a complete memory dump is not relevant to analysis and therefore contributes wastefully
to the size of a dump file. A final disadvantage is that the paging file on the boot volume (the
volume with the \Windows directory) must be at least as large as the amount of physical memory
on the system plus up to 365 MB. Because the size of the paging files required, in general,
inversely tracks the amount of physical memory present, this requirement can force the paging file
to be unnecessarily large. You should therefore consider the advantages offered by the small and

kernel memory dump options.

An advantage of a minidump is its small size, which makes it convenient for exchange via
e-mail, for example. In addition, each crash generates a file in the directory \Windows\Minidump
with a unique file name consisting of the string “Mini” plus the date plus a sequence number that
counts the number of minidumps on that day (for example, Mini082608-01.dmp). A disadvantage
of minidumps is that to analyze them, you must have access to the exact images used on the
system that generated the dump at the time you analyze the dump. (At a minimum, a copy of the
matching Ntoskrnl.exe is needed to perform the most basic analysis.) This can be problematic if
you want to analyze a dump on a system different from the system that generated the dump.
However, the Microsoft symbol server contains images (and symbols) for all recent Windows
versions, so you can set the image path in the debugger to point to the symbol server, and the
debugger will automatically download the needed images. (Of course, the Microsoft symbol

server won’t have images for thirdparty drivers you have installed.)

A more significant disadvantage is that the limited amount of data stored in the dump can
hamper effective analysis. You can also get the advantages of minidumps even when you
configure a system to generate kernel or complete crash dumps by opening the larger crash with
WinDbg and using the .dump /m command to extract a minidump. Note that a minidump is

automatically created even if the system is set for full or kernel dumps.

Note You can use the .dump command from within Livekd to generate a memory image of a
live system that you can analyze offline without stopping the system. This approach is useful
when a system is exhibiting a problem, but is still delivering services, and you want to
troubleshoot the problem without interrupting service. The resultant crash image isn’t necessarily
fully consistent because the contents of different regions of memory reflect different points in time,

but it might contain information useful for an analysis.

The kernel memory dump option offers a practical middle ground. Because it contains all of
kernel-mode-owned physical memory, it has the same level of analysis-related data as a complete
memory dump, but it omits the usually irrelevant user-mode data and code, and therefore can be

1016

significantly smaller. As an example, on a system running Windows Vista with 4 GB of RAM, a
kernel memory dump was 160 MB in size.

When you configure kernel memory dumps, the system checks whether the paging file is
large enough, as described earlier. Some general recommendations follow in Table 14-1, but these
are only estimated sizes because there is no way to predict the size of a kernel memory dump. The
reason you can’t predict the size of a kernel memory dump is that its size depends on the amount
of kernel-mode memory in use by the operating system and drivers present on the machine at the
time of the crash.

TAELE 14-1 Default Mininwan Pagang File Sizes for Kernel Dumps

System Memory Size Minimum Page File Size for Kernel Dumps
< 128 MB E0 MEB

< 4GB 200 MB

= BGR 400 KB

== B GH 200 ME

Therefore, it is possible that at the time of the crash, the paging file is too small to hold a
kernel dump. If you want to see the size of a kernel dump on your system, force a manual crash
either by configuring the option to allow you to initiate a manual system crash from the console or
by using the Notmyfault tool described later in this chapter. (Both these approaches are described
later in the chapter.) When you reboot, you can check to make sure that a kernel dump was
generated and check its size to gauge how large to make your boot volume paging file. To be
conservative, on 32-bit systems you can choose a page file size of 2 GB plus up to 356 MB,
because 2 GB is the maximum kernel-mode address space available (unless you are booting with
the 3gb and/or userva boot options, in which case this can be up to 3 GB). If you do not have
enough space on the boot volume for saving the memory.dmp file, you can choose a location on
any other local hard disk through the dialog box shown in Figure 14-4.

Crash Dump Generation

When the system boots, it checks the crash dump options configured by reading the registry
value HKLM\SYSTEM\CurrentControlSet\Control\CrashControl. If a dump is configured, it
makes a copy of the disk miniport driver used to write to the boot volume in memory and gives it
the same name as the miniport with the word “dump ” prefixed. It also checksums the
components involved with writing a crash dump—including the copied disk miniport driver, the
I/O manager functions that write the dump, and the map of where the boot volume’s paging file is
on disk—and saves the checksum. When KeBugCheckEx executes, it checksums the components
again and compares the new checksum with that obtained at the boot. If there’s not a match, it
does not write a crash dump, because doing so would likely fail or corrupt the disk. Upon a
successful checksum match, KeBugCheckEx writes the dump information directly to the sectors
on disk occupied by the paging file, bypassing the file system driver and storage driver stack
(which might be corrupted or even have caused the crash).

Note Because the page file is created early in system startup during memory manager
initialization, most crashes the are caused by bugs in system-start driver initialization result in a

dump file. Crashes in early Windows boot components such as the HAL or the initialization of

1017

boot drivers occur too early for the system to have a page file, so using another computer to debug
the startup process is the only way to perform dump analysis in those cases.

When the Session Manager (SMSS) re-initializes the page file during the boot process, it
calls the function SmpCheckForCrashDump, which looks in the boot volume’s current paging file
(created by the kernel during the boot process) to see whether a crash dump is present. SMSS then
checks whether the target dump file is on a different volume than the paging file. If so, it renames
the paging file to a temporary dump file name, Dumpxxx.tmp (where xxx is the current low value
of the system’s tick count), and truncates the file to the size of the dump data. (This information is
stored in the header on top of each dump file.) It also removes both the hidden and system
attributes from the file. SMSS then creates the volatile registry key HKLM\SYSTEM
\CurrentControlSet\Control\CrashControl\MachineCrash and stores the temporary dump file name
in the value “DumpFile”. It then writes a REG_ DWORD to the “TempDestination” value
indicating whether the dump file location is only the temporary destination. If the paging file is on
the same volume as the destination dump file, a temporary dump file isn’t used, and the paging
file is directly renamed to the dump file name. In this case, the DumpFile value will be
%SystemRoot%\Memory.dmp and TempDestination will be 0.

Later in the boot, Wininit checks for the presence of the MachineCrash key, and if it exists,
Wininit launches WerFault, which reads the TempDestination and DumpFile values and either
renames or copies the temporary file to its target location (typically %System Root%\Mem
ory.dmp, unless configured otherwise) depending on whether the target is on the same volume as
the Windows directory. WerFault then writes the final dump file name to the FinalDumpFile
Location value in the MachineCrash key. These steps are shown in Figure 14-5.

I

“KachineCrash’ | M
@ wininit | v

samshkon — \II (53 wininit
Manager E‘i—' 2 /.-"l

oo
User miade \ (] = '\

Kernel mods \ ! (3) 5ME5
o

MiCRataraginaFile t Epagmfua

FIGURE £4- Crash dump file generation

To support machines that might not have a paging file or no paging file on the boot volume,
for example on systems that boot from a SAN or read-only media, Windows also supports the use
of a dedicated dump file that is configured in the DedicatedDumpFile and DumpFileSize values
under the HKLM\SYSTEM\CurrentControlSet\Control\CrashControl registry key. When a
dedicated dump file is specified, the crash dump driver (%SystemRoot%\System32
\Drivers\Crashdmp.sys) creates the dump file of the required size and writes the crash data there
instead of the paging file. If a full or kernel dump is configured but there is not enough space on
the target volume to create the dedicated dump file of the required size, the system falls back to

writing a minidump.

1018

14.5 Windows error reporting

As mentioned in Chapter 3, Windows includes a facility called Windows Error Reporting
(WER), which facilitates the automatic submission of process and system failures (such as crashes
and/or hangs) to Microsoft (or an internal error reporting server) for analysis. This feature is
enabled by default, but it can be modified by changing WER’s behavior, which takes the
additional step of determining whether the system is configured to send a crash dump to Microsoft
(or a private server, explained further in the “Online Crash Analysis” section later in the chapter)
for analysis on a reboot following a crash. The WER Advanced Settings screen, which you access
from the Problem Reports And Solutions screen of the Control Panel’s System applet, is shown in
Figure 14-6. This dialog box allows you to configure the system’s error reporting settings.

= e
|| @ 13 Fuablem Bamany snd Safuan
Acbvnnced sesings foe penbiem reporing
Far ey prograry, problars rapar e
D
o
Far sl unees s pregrarm, prabion iporieg o st be Ak cack oo o chome ot
| Chengepatting |
R B s Wikt is 5 o Moew i wies po-chonst reportiog settings || Thargeseiog |
Sancheg #itkaonsl (el pevasin
Sutmusc sy mnd grs rfomascn # § o nesdedta bedpacka proklems
st irdDEAE 5 SnET
Frag cur gevary deisawr] osbm
Bock it
Uont sand mbesmatios sbout the lofoweng programs
oo || Cameni

FIGURE 14-6 Ermar reporting configuration dialog bow

As mentioned earlier, if Wininit.exe finds the HKLM\SYSTEM\CurrentControlSet
\Control\CrashControl\MachineCrash key, it executes WerFault.exe with the -k —c flags (the k
flag indicates kernel error reporting, and the c flag indicates that the full or kernel dump should be
converted to a minidump) to have WerFault.exe check for a kernel crash dump file. WerFault
takes the following steps for preparing to send a crash dump report to the Microsoft Online Crash
Analysis (OCA) site (or, if configured, an internal error reporting server):

1. If the type of dump it generated was not a minidump, it extracts a minidump from the
dump file and stores it in the default location of \Windows\Minidumps, unless otherwise
configured through the MinidumpDir value in the HKLM\SYSTEM\CurrentControlSet
\Control\CrashControl\ key.

2. It writes the name of the minidump files to HKLM\SOFTWARE\Microsoft
\Windows\Windows Error Reporting\KernelFaults\Queue.

3. It adds a command to execute WerFault.exe (\Windows\System32\WerFault.exe) to
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce so that WerFault is executed

1019

one more time during the first user’s logon to the system for purposes of actually sending the error
report.

14.6 Online Crash analysis

When the WerFault utility executes during logon, as a result of having configured itself to
start, it checks the HKLM\SOFTWARE\Microsoft\Windows\Windows Error Reporting
\KernelFaults\Queue key to look for queued reports that may have been added in the previous
dump conversion phase. It also checks whether there are previously unsent crash reports from
previous sessions. If there are, it launches WerFault.exe with the —k —q flags (the q flag specifies
the usage of queued reporting mode) to generate an XML-formatted file containing a basic
description of the system, including the operating system version, a list of drivers installed on the
machine, and the list of Plug and Play drivers loaded on the system at the time of the crash.

If configured to ask for user input (which is not the default), it then presents the dialog box
shown in Figure 14-7, which asks the user whether he or she wants to send an error report to
Microsoft. If the user chooses to send the error report, and unless overridden by Group Policy,
WerFault sends the XML file and minidump to http://oca.microsoft.com, which forwards the data

to a server farm for automated analysis, described in the next section.

[P didra rat et o [[=
B ‘wirdows has secowvered from an ineaspedsd
= chumdoan
“mndasncin chedk enkne er @ sciuhen iothe prebhlam

= [He probdern deigds Shack for ihiticn Canct. |
[Peoisten: Gipaaer i i
Pids b Bt Plwmie: Blueiieen |
P OS Waraen: [T O RE e] E
| Locak: Ky FLEES
\adison i o aon aboss s prabie m
{ BCCedu: 3]

8L SFEEFLE

ACP2 T A
LALRG: AR,

FIGURE 14-7 Crash dump error reparting dialog b

The server farm’s automated analysis uses the same analysis engine that the Microsoft kernel
debuggers use when you load a crash dump file into them (described shortly). The analysis
generates a bucket ID, which is a signature that identifies a particular crash type. The server farm
queries a database using the bucket ID to see whether a resolution has been found for the crash,
and it sends a URL back to WerFault that refers it to the OCA Web site (http://oca.microsoft.com).
If configured to do so, WerFault launches the Windows Error Reporting Console, or WerCon

(%SystemRoot%\System32\Wercon.exe), which is a program that allows users to interface with
WER for receiving problem resolution and tracking information as well as for configuring WER
behavior. When browsing for solutions, WerCon contains an Internet browser frame to open the
page on the WER Web site that reports the preliminary crash analysis. If a resolution is available,
the page instructs the user where to obtain a hotfix, service pack, or third-party driver update.

1020

14.7 Basic Crash Dump analysis

If OCA fails to identify a resolution or you are unable to submit the crash to OCA, an
alternative is analyzing crashes yourself. As mentioned earlier, WinDbg and Kd both execute the
same analysis engine used by OCA when you load a crash dump file, and the basic analysis can
sometimes pinpoint the problem. So you might be fortunate and have the crash dump solved by
the automatic analysis. But if not, there are some straightforward techniques to try to solve the
crash.

This section explains how to perform basic crash analysis steps, followed by tips on
leveraging the Driver Verifier (which is introduced in Chapter 7) to catch buggy drivers when they
corrupt the system so that a crash dump analysis pinpoints them.

Note OCA’s automated analysis may occasionally identify a highly likely cause of a crash
but not be able to inform you of the suspected driver. This happens because it only reports the
cause for crashes that have their bucket ID entry populated in the OCA database, and entries are
created only when Microsoft crash-analysis engineers have verified the cause. If there’s no bucket

ID entry, OCA reports that the crash was caused by “unknown driver.”

Notmyfault

You can use the Notmyfault utility from Windows Sysinternals (www.microsoft.com

/technet/sysinternals) to generate the crashes described here. Notmyfault consists of an executable

named Notmyfault.exe and a driver named Myfault.sys. When you run the Notmyfault executable,
it loads the driver and presents the dialog box shown in Figure 14-8, which allows you to crash the
system in various ways or to cause the driver to leak paged pool. The crash types offered represent
the ones most commonly seen by Microsoft’s product support services. Selecting an option and
clicking the Do Bug button causes the executable to tell the driver, by using the DeviceloControl
Windows API, which type of bug to trigger.

Note You should execute Notmyfault crashes on a test system or on a virtual machine
because there is a small risk that memory it corrupts will be written to disk and result in file or
disk corruption.

1021

-uc:lr.-l,-n-;.n (|
Heshl s
D crah ik pragrein
Ergt M o, P vior i [2002200
Pk s i
W High[ROL bt [F e rnbroede]
1™ Pt Ui
™ e (e
Sy
Hioh IRIOL bt [urmmsada)
1o HagIRe
R echonk
™ Harg

Laak Pacd

User nvode /

Kernel mode /

IDCTL IRt e ™

beig | Ee

MyFault 505
FIGURE L3-8 Mty fault

Note The names of the Notmyfault executable and driver highlight the fact that user mode
cannot directly cause the system to crash. The Notmyfault executable can cause a crash only by
loading a driver to perform an illegal operation for it in kernel mode.

Basic Crash Dump analysis

The most straightforward Notmyfault crash to debug is the one caused by selecting the High
IRQL Fault (Kernelmode) option and clicking the Do Bug button. This causes the driver to
allocate a page of paged pool, free the pool, raise the IRQL to above DPC/dispatch level, and then
touch the page it has freed. (See Chapter 3 for more information on IRQLSs.) If that doesn’t cause a
crash, the process continues by reading memory past the end of the page until it causes a crash by
accessing invalid pages. The driver performs several illegal operations as a result:

1. It references memory that doesn’t belong to it.

2. It references paged pool at an IRQL that’s DPC/dispatch level or higher, which is illegal
because page faults are not permitted when the processor IRQL is DPC/dispatch level or higher.

3. When it goes past the end of the memory that it had allocated, it tries to reference memory
that is potentially invalid.

The reason the first page reference might not cause a crash is that it won’t generate a page
fault if the page that the driver frees remains in the system working set. (See Chapter 9 for
information on the system working set.)

When you load a crash generated with this bug into WinDbg, the tool’s analysis displays
something like this:

1. Microsoft (R) Windows Debugger Version 6.9.0003.113 X86
2. Copyright (c) Microsoft Corporation. All rights reserved.
3. Loading Dump File [C:\windows\MEMORY.DMP]

1022

Kernel Summary Dump File: Only kernel address space is available
5. Symbol search path is: srv*c:\programming\symbols*http://msdl.microsoft.com
/download/
symbols
. Executable search path is:
8. Windows Server 2008 Kernel Version 6001 (Service Pack 1) MP (2 procs) Free x86

compatible
9. Product: WinNt, suite: TerminalServer SingleUserTS
10. Built by: 6001.18063.x86ftre.vistaspl gdr.080425-1930
11. Kernel base = 0x81804000 PsLoadedModuleList = 0x8191bc70
12. Debug session time: Sun Sep 21 22:58:19.994 2008 (GMT-4)
13. System Uptime: 2 days 0:11:17.876
14. Loading Kernel Symbols
S et
16, e
17. Loading User Symbols
18. Loading unloaded module list
9. ..
21. ko
22. * Bugcheck Analysis *
23. * *
25. Use lanalyze -v to get detailed debugging information.
26. BugCheck D1, {a35db800, 1c, 0, 9879¢3dd}
27. *** ERROR: Module load completed but symbols could not be loaded for myfault.sys
28. Probably caused by : myfault.sys (myfault+3dd)
29. Followup: MachineOwner
30, e

The first thing to note is that WinDbg reports errors trying to load symbols for Myfault.sys and
Notmyfault.exe. These are expected because the symbol files for Myfault.sys and Notmyfault.exe
are not on the symbol-file path (which is configured to point at the Microsoft symbol server).
You’ll see similar errors for third-party drivers and executables that do not ship with the operating

system.

The analysis text itself is terse, showing the numeric stop code and bug-check parameters
followed by a “Probably caused by” line that shows the analysis engine’s best guess at the
offending driver. In this case it’s on the mark and points directly at Myfault.sys, so there’s no need

for manual analysis.

The “Followup” line is not generally useful except within Microsoft, where the debugger
looks for the module name in the Triage.ini file that’s located within the Triage directory of the
Debugging Tools for Windows installation directory. The Microsoft-internal version of that file
lists the developer or group responsible for handling crashes in a specific driver, and the debugger
displays the developer’s or group’s name in the Followup line when appropriate.

1023

Verbose Analysis

Even though the basic analysis of the Notmyfault crash identifies the faulty driver, you
should always have the debugger execute a verbose analysis by entering the command:

1. lanalyze —v
The first obvious difference between the verbose and default analysis is the description of the stop

code and its parameters. Following is the output of the command when executed on the same

dump:

1. DRIVER IRQL NOT LESS OR_EQUAL (d1)

2. An attempt was made to access a pageable (or completely invalid) address at an
3. interrupt request level (IRQL) that is too high. This is usually

4. caused by drivers using improper addresses.

5. If kernel debugger is available get stack backtrace.

6. Arguments:

7. Argl: a35db800, memory referenced

8. Arg2: 0000001c, IRQL

9. Arg3: 00000000, value 0 = read operation, 1 = write operation

10. Arg4: 9879¢3dd, address which referenced memory

This saves you the trouble of opening the help file to find the same information, and the text
sometimes suggests troubleshooting steps, an example of which you’ll see in the next section on
advanced crash dump analysis.

The other potentially useful information in a verbose analysis is the stack trace of the thread
that was executing on the processor that crashed at the time of the crash. Here’s what it looks like
for the same dump:

STACK TEXT:

80395b78 9879¢3dd badb0d00 8312d054 00000003 nt!KiTrapOE+0x2ac

WARNING: Stack unwind information not available. Following frames may be wrong.

80395c44 81a505¢e5 855802e0 849¢26¢0 849¢2730 myfault+0x3dd

80395¢64 81a50d8a 83746238 855802¢0 00000000 nt!lopSynchronousServiceTail

+0x1d9

80395d00 81a3aa61 83746238 849e26c0 00000000 nt!TopXxxControlFile+0x6b7

80395d34 8185ba7a 0000007c 00000000 00000000 nt!NtDeviceloControlFile+0x2a

80395d34 77019294 0000007c 00000000 00000000 nt!KiFastCallEntry+0x12a

0012f4a0 77¢84c9b 0000007¢ 00000000 00000000 ntdll!ZwDeviceloControlFile+0xb

10. 0012504 004017¢3 0000007¢ 83360018 00000000 KERNEL32!DeviceloControl
+0x100

11. 000200ac 00000000 00000000 00000000 00000000 NotMyfault+0x17c3

The preceding stack shows that the Notmyfault executable image, shown at the bottom, invoked

N o

2 g X[e

the DeviceloControl function in Kernel32.dll, which in turn invoked ZwDeviceloControl File in
Ntdll.dll, and so on, until finally the system crashed with the execution of an instruction in the
Myfault image. A stack trace like this can be useful because crashes sometimes occur as the result
of one driver passing another one that is improperly formatted or corrupt or has illegal parameters.
The driver that’s passed the invalid data might cause a crash and get the blame in an analysis,

1024

when the stack reveals that another driver was involved. In this sample trace, no driver other than
Myfault is listed. (The module “nt” is Ntoskrnl.)

If the driver singled out by an analysis is unfamiliar to you, use the Im (list modules)
command to look at the driver’s version information. Add the k (kernel modules) and v (verbose)

options along with the m (match) option followed by the name of the driver and a wildcard:

1. Ikd> Im kv m myfault*

2. start end module name

3. a98e1000 a98elecO myfault (deferred)
4. Image path: \?2\C:\Windows\system32\drivers\myfault.sys
5. Image name: myfault.sys

6. Timestamp: Sat Oct 14 16:09:18 2006 (453143EE)
7. CheckSum: 0000295E

8. ImageSize: 00000ECO

9. File version: 2.0.0.0

10. Product version: 2.0.0.0

11. File flags: 0 (Mask 3F)

12. File OS: 40004 NT Win32

13. File type: 3.7 Driver

14. File date: 00000000.00000000

15. Translations: 0409.04b0

16. CompanyName: Sysinternals

17. ProductName: Sysinternals Myfault
18. InternalName: myfault.sys

19. OriginalFilename: myfault.sys

20. ProductVersion: 2.0

21. FileVersion: 2.0

22. FileDescription: Crash Test Driver

23. LegalCopyright: Copyright (C) M. Russinovich 2002-2004

In addition to using the description to identify the purpose of a driver, you can also use the file and
product version numbers to see whether the version installed is the most up-to-date version
available. (You can do this by checking the vendor Web site, for instance.) If version information
isn’t present (because it might have been paged out of physical memory at the time of the crash),
look at the driver image file’s properties in Windows Explorer on the system that crashed.

14.8 Using Crash Troubleshooting Tools

The crash generated in the preceding section with Notmyfault’s High IRQL Fault
(Kernelmode) option poses no challenge for the debugger’s automated analysis. Unfortunately,
most crashes are not so easy and sometimes are impossible to debug. There are several levels of
increasing severity in terms of system performance degradation that might help turn system
crashes that cannot be analyzed into ones that can be. If the crashes generated after you configure

a level and reboot aren’t revealing the cause, try the next level.

1025

1. If there are one or more drivers you consider likely sources of the crashes—because they
were introduced into the system relatively recently, they were recently updated, or the
circumstances of the crash implicate them—enable them for verification using the Driver Verifier
and check all the verification options except for low resources simulation. (See Chapter 7 for more

information on Driver Verifier.)
2. Enable the same level of verification as in level 1 on all unsigned drivers in the system.

3. Enable the same verification as in level 1 on all drivers in the system. To maintain
reasonable performance, you may want to divide the drivers into groups, enabling the Driver

Verifier on one group at a time between reboots

Obviously, before you spend time and energy making system configuration changes and
analyzing crashes, you should ensure that your system’s kernel and drivers are the most recent
available by using the services of Windows Update and third-party driver support sites.

Note If your system becomes unbootable because the Driver Verifier detects a driver error
and crashes the system, then start in safe mode (where verification is disabled), run the Driver

Verifier, and delete verification settings.

The following sections demonstrate how the Driver Verifier can make impossible-to-debug

crashes into ones that you can solve.

14.8.1 Buffer Overrun, Memory Corruptions, and Special Pool

By far the most common source of crashes on Windows is pool corruption. Pool corruption
usually occurs when a driver suffers from a buffer overrun or buffer underrun bug that causes it to
overwrite data past either the end or start of a buffer it has allocated from paged or nonpaged pool.
The Executive’s pool-tracking structures reside on either side of a pool buffer and separate buffers
from each other. These bugs, therefore, cause corruption to the pool tracking structures, to buffers
owned by other drivers, or to both. You can often catch the culprit of a pool overrun by using
the !pool command to examine the surrounding pool tags. Find the address at which the corruption
occurred and use !pool address _of corruption. This command will display all the pool allocations
that are on the same page as the corruption. Looking in the left column, find the range of the
corrupted address and then look at the allocation just previous to it and find its pool tag. This will
likely be the culprit in a buffer overrun. You can use the pooltag.txt file in the Triage folder of the
Debugging Tools for Windows installation directory to find the driver that owns the pool tag, or

use the Strings utility from Sysinternals.

Pool corruption can also occur when a driver writes to pool it had previously owned but
subsequently freed. This is called a use after free bug and is usually caused by a race condition in
a driver. These bugs are particularly hard to debug because the driver that corrupts memory no
longer has any traceable ties to the memory, such as a neighboring pool tag as in a buffer overrun.
Another fairly common cause of pool corruption is direct memory access (DMA). DMA occurs
when hardware writes directly to RAM instead of going through a driver; however, the driver is
still responsible for coordinating the whole process by allocating the memory that the hardware
will write to and programming the hardware registers of the device with the details of the

1026

operation. If a driver has a bug that releases the memory it is using for DMA before the hardware
writes to it, the memory can be given to another driver or even to a user-mode application, which

will certainly not expect to have hardware writing to it.

The crashes caused by pool corruption are virtually impossible to debug because the system
crashes when corrupted data is referenced, not when the corruption occurs. However, sometimes
you can take steps to at least obtain a clue about what corrupted the memory. The first step is to
try to determine the size of the corruption by looking at the corrupted data. If the corruption is a
single bit, it was likely caused by bad RAM. If the corruption is fairly small, it could be caused
by hardware or software, and finding a root cause will be nearly impossible. In the case of large
corruptions, you can look for patterns in the corruption, like strings (for example, HTTP packet
payloads, file contents of text-based files, and so on) or audio/video data (usually patterns of
integers less than 1,024). Open an MP3 file in a hex editor to get an idea of what audio data looks

like in memory.

Note To assist in catching pool corruptions, Windows checks the consistency of a buffer’s
pooltracking structures, and those of the buffer’s immediate neighbors, on every pool allocation
and free operation. Thus, buffer overruns are likely to be detected shortly after the corruption and
identified with a crash that has the BAD POOL_HEADER stop code.

You can generate a pool corruption crash by running Notmyfault and selecting the Buffer
Overflow bug. This causes Myfault to allocate a buffer and then overwrite the 40 bytes following
the buffer. There can be a significant delay between the time you click the Do Bug button and
when a crash occurs, and you might even have to generate pool usage by exercising applications
before a crash occurs, which highlights the distance between a corruption and its effect on system
stability. An analysis of the resultant crash almost always reports Ntoskrnl or another driver as
being the likely cause, which demonstrates the usefulness of a verbose analysis with its
description of the stop code:

DRIVER CORRUPTED EXPOOL (c5)

An attempt was made to access a pageable (or completely invalid) address at an
interrupt request level (IRQL) that is too high. This is

caused by drivers that have corrupted the system pool. Run the driver

verifier against any new (or suspect) drivers, and if that doesn’t turn up

the culprit, then use gflags to enable special pool.

Arguments:

Argl: 4fAf4£53, memory referenced

Arg2: 00000002, IRQL

Arg3: 00000001, value 0 = read operation, 1 = write operation

A N R o o

—_— —
— O

Arg4: 81926886, address which referenced memory

The advice in the description is to run the Driver Verifier against any new or suspect drivers
or to use Gflags to enable special pool. Both accomplish the same thing: to have the system detect
a potential corruption when it occurs and crash the system in a way that makes the automated
analysis point at the driver causing the corruption.

1027

If the Driver Verifier’s special pool option is enabled, verified drivers use special pool, rather
than paged or nonpaged pool, for any allocations they make for buffers slightly less than a page in
size. A buffer allocated from special pool is sandwiched between two invalid pages and by default
is aligned against the top of the page. The special pool routines also fill the unused portions of the
page in which the buffer resides with a random pattern. Figure 14-9 depicts a special pool
allocation.

The system detects any buffer overruns of under a page in size at the time of the overrun
because they cause a page fault on the invalid page following the buffer. The signature serves to
catch buffer underruns at the time the driver frees a buffer because the integrity of the pattern
placed there at the time of allocation will have been compromised.

Page n+2 Irwvalicl
Higihar
Hes ackiTeises
Page n+1
Slgnature
Pagen Irvvalicl

FIGURE 14-9 special pool buffer allcation

To see how the use of special pool causes a crash that the analysis engine easily diagnoses,
run the Driver Verifier Manager. Choose the Create Custom Settings (For Code Developers)
option on the first page of the wizard, choose Select Individual Settings From A Full List on the
second, and then select Special Pool. Choose the Select Drivers From A List option on the
subsequent page, and on the page that lists drivers press the button to add unloaded drivers, and
then type myfault.sys into the File Find dialog box. (You do not have to find myfault.sys in the
File Find dialog box; just enter its name.) Then check the myfault.sys driver, exit the wizard, and
reboot.

When you run Notmyfault and cause a buffer overflow, the system will immediately crash
and the analysis of the dump reports this:

1. Probably caused by : myfault.sys (myfault+3f1)
A verbose analysis describes the stop code like this:

DRIVER PAGE FAULT BEYOND END OF ALLOCATION (d6)

N bytes of memory was allocated and more than N bytes are being referenced.
This cannot be protected by try-except.

When possible, the guilty driver’s name (Unicode string) is printed on

the bugcheck screen and saved in KiBugCheckDriver.

Arguments:

Argl: beb50000, memory referenced

Arg2: 00000001, value 0 = read operation, 1 = write operation

IO N R o

Arg3: ec3473f1, if non-zero, the address which referenced memory.
Arg4: 00000000, (reserved)

_
=

1028

Special pool made an elusive bug into one that instantly reveals itself and makes the

analysis trivial.

14.8.2 Code Overwrite and System Code Write Protection

A driver with a bug that causes corruption or misinterpretation of its own data structures can
reference memory the driver doesn’t own when it interprets corrupted data as a memory pointer
value. The target of the pointer can be anything in the virtual address space, including data
belonging to other drivers, invalid memory, or the code of other drivers or the kernel. As with
buffer overruns, by the time that corruption is detected and the system crashes, it’s usually
impossible to identify the driver that caused the corruption. Enabling special pool increases the
chance of catching wild-pointer bugs, but it does not catch code corruption.

When you run Notmyfault and select the Code Overwrite option, the Myfault driver corrupts
the entry point to the NtReadFile kernel function. One of two things will happen at this point: if
your system has 255 MB or less of physical memory, you’ll get a crash for which an analysis
points at Myfault.sys. The stop code description that a verbose analysis displays tells you that
Myfault attempted to write to read-only memory:

ATTEMPTED WRITE TO READONLY MEMORY (be)

An attempt was made to write to readonly memory. The guilty driver is on the
stack trace (and is typically the current instruction pointer).

When possible, the guilty driver’s name (Unicode string) is printed on

the bugcheck screen and saved in KiBugCheckDriver.

Arguments:

Argl: 804bb71d, Virtual address for the attempted write.

Arg2: 004bb121, PTE contents.

Arg3: b804db60, (reserved)

10. Arg4: 0000000, (reserved)

However, if you have more than 255 MB of memory, you’ll get a different type of crash because

O N R o

the attempt to corrupt the memory isn’t caught. Because NtReadFile is a commonly executed
system service that is used by the Windows subsystem to read keyboard and mouse input, the
system will almost immediately crash as a thread attempts to execute the corrupted code and
generates an illegal instruction fault. The analysis of crashes generated with this bug is always
wrong, but it might vary, with Win32k.sys and Ntoskrnl.exe commonly being the analyzer’s best
guess as to what’s responsible. The bugcheck description for these crashes is:
KMODE_EXCEPTION NOT HANDLED (l¢)

This is a very common bugcheck. Usually the exception address pinpoints

the driver/function that caused the problem. Always note this address

as well as the link date of the driver/image that contains this address.

Arguments:

Argl: c0000005, The exception code that was not handled

Arg2: 80461885, The address that the exception occurred at

Arg3: 00000000, Parameter 0 of the exception

Arg4: 00000000, Parameter 1 of the exception

SO NG R o o

1029

The reason for the different behaviors on different configurations relates to a mechanism called
system code write protection. If system code write protection is enabled, the memory manager
maps Ntoskrnl.exe, the HAL, and boot drivers using standard physical pages (4 KB on x86 and
x64, and 8 KB on [A64). Because the granularity of protection in an image is the standard page
size, the memory manager can write-protect code pages so that an attempt to modify them
generates an access fault (as seen in the first crash). However, when system code write protection
is disabled on systems with more than 255 MB of RAM, the memory manager uses large pages (4
MB on x86, and 16 MB on [A64 and x86-64) to map Ntoskrnl.exe and the HAL.

If system code write protection is off and crash analysis reports unlikely causes for a crash or
you suspect code corruption, you should enable it. Verifying at least one driver with the Driver
Verifier is the easiest way to enable it. You can also enable it manually by adding two registry
values under HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Manage-
ment. First, specify the amount of RAM at which the memory manager uses large pages instead of
standard pages to map Ntoskrnl.exe as an effectively infinite value. You do this by creating a
DWORD value called LargePageMinimum and setting it to OXFFFFFFFF. Then add another
DWORD value named EnforceWriteProtection and set it to 1. You must reboot for the changes to
take effect.

Note When the debugger has access to the image files included in a crash dump, the analysis
internally executes the !chkimg debugger command to verify that a copy of an image in a crash
dump matches the on-disk image and reports any differences. Note that chkimg will always report
discrepancies in Ntoskrnl.exe if you’ve enabled the Driver Verifier.

14.9 Advanced Crash Dump analysis

The preceding section leverages the Driver Verifier to create crashes that the debugger’s
automated analysis engine can resolve. You might still encounter cases where you cannot get a
system to produce easily analyzable crashes and, if so, you will need to execute manual analysis to
try and determine what the problem is. Here are some examples of basic commands that can
provide clues during crash analysis. The Debugging Tools for Windows help file provides
complete documentation on these and other commands as well as examples of how to use them
during crash analysis:

m Use the !process 0 0 debugger command to look at the processes running, and make sure
that you understand the purpose of each one. Try disabling or uninstalling unnecessary

applications and services.

m Use the Im command with the kv option to list the loaded kernel-mode drivers. Make sure
that you understand the purpose of any third-party drivers and that you have the most recent

versions.

m Use the !'vm command to see whether the system has exhausted virtual memory, paged
pool, or nonpaged pool. If virtual memory is exhausted, the committed pages will be close to the
commit limit, so try to identify a potential memory leak by examining the list of processes to see

1030

which one reports high commit usage. If nonpaged pool or paged pool is exhausted (that is, the
usage is close to the maximum), see the “Troubleshooting a Pool Leak™ experiment in Chapter 9.

There are other debugging commands that can prove useful, but more advanced knowledge is
required to apply them. The !lirp command is one of them. The next section shows the use of this
command to identify a suspect driver.

14.9.1 Stack Trashes

Stack overrun or stack trashing typically results from a buffer overrun or underrun or when a
driver passes a buffer address located on the stack to a lower driver on the device stack, which
then performs the work asynchronously.

In the case of a buffer overrun or underrun, instead of residing in pool, as you saw with
Notmyfault’s buffer overrun bug, the target buffer is on the stack of the thread that executes the
bug. This type of bug is another one that’s difficult to debug because the stack is the foundation
for any crash dump analysis.

In the case of passing buffers on the stack to lower drivers, if the lower driver returns to the
caller immediately because it used a completion routine to perform the work, instead of returning
synchronously, when the completion routine is called, it will use the stack address that was passed
previously, which could now correspond to a different state on the caller’s stack and result in
corruption.

When you run Notmyfault and select Stack Trash, the Myfault driver overruns a buffer it
allocates on the kernel stack of the thread that executes it. When Myfault tries to return control to
the Ntoskrnl function that was invoked, it reads the return address, which is the address at which it
should continue executing, from the stack. The address was corrupted by the stackbuffer overrun,
so the thread continues execution at some different address in memory—an address that might not
even contain code. An illegal exception and crash occur when the thread executes an illegal CPU

instruction or it references invalid memory.

The driver that the crash dump analysis of a stack overrun points the blame at will vary from
crash to crash, but the stop code will almost always be KMODE EXCEPTION NOT
_HANDLED. If you execute a verbose analysis, the stack trace looks like this:

STACK TEXT:
881fc744 81¢82590 0000008e c0000005 00000000 nt!KeBugCheckEx+0x1e
881fcb14 81ca45da 881fcb30 00000000 881fcb84 nt!KiDispatchException+0x1a9
881fcb7c 81ca458e 881fccd4 00000000 badb0d00 nt!CommonDispatchException+0x4a
881fcc2c 81d07fd3 9762b658 84736e68 84736e68 nt!Kei386EoiHelper+0x186
881fcc44 8198615 99321810 84736e68 84736ed8 nt!TofCallDriver+0x63
881fcco4 81e98dba 9762b658 99321810 00000000 nt!lopSynchronousServiceTail+0x1d9
881fcd00 81e82a8d 9762b658 84736e68 00000000 nt!TopXxxControlFilet+0x6b7
881fcd34 81ca3ala 0000007c 00000000 00000000 nt!NtDeviceloControlFile+0x2a

. 881fcd34 779¢9a94 0000007c 00000000 00000000 nt!KiFastCallEntry+0x12a

. WARNING: Frame IP not in any known module. Following frames may be wrong.

NG N o o

—_— —
— O

1031

12. 001294 00000000 00000000 00000000 00000000 0x779¢9a94

Notice how the call to IofCallDriver leads immediately to Kei386EoiHelper and into an exception,
instead of a driver’s IRP dispatch routine. This is consistent with the stack having been corrupted
and the IRP dispatch routine causing an exception when attempting to return to its caller by
referencing a corrupted return address. Unfortunately, mechanisms like special pool and system
code write protection can’t catch this type of bug. Instead, you must take some manual analysis
steps to determine indirectly which driver was operating at the time of the corruption. One way is
to examine the IRPs that are in progress for the thread that was executing at the time of the stack
trash. When a thread issues an 1/O request, the I/O manager stores a pointer to the outstanding IRP
on the IRP list of the ETHREAD structure for the thread. The !thread debugger command dumps
the IRP list of the target thread. (If you don’t specify a thread object address, !thread dumps the
processor’s current thread.) Then you can look at the IRP with the !irp command:

1. lkd> !thread

2. THREAD 858d1aa0 Cid 0248.02¢0 Teb: 7ffd9000 Win32Thread: ffad4e90 RUNNING
on processor 0

3 IRP List:

4 bc5a7f68: (0006,0094) Flags: 00000000 Mdl: 00000000

5. Not impersonating

6. Attached Process 84f45d90

7

8 Ikd> lirp bc5a7f68

9. Irp is active with 1 stacks 1 is current (= 0x837a7ab8)

10. No Mdl Thread 858d1aa0: Irp stack trace.

11. cmd flg cl Device File Completion-Context

12. >[e, 0] 00 85616378 8504290 00000000-00000000

13. \DriveMYFAULT Args: 00000000 00000000 83360010 00000000

The output shows that the IRP’s current and only stack location (designated with the “>" prefix) is
owned by the Myfault driver. If this were a real crash, the next steps would be to ensure that the
driver version installed is the most recent available, install the new version if it isn’t, and if it is, to
enable the Driver Verifier on the driver (with all settings except low memory simulation).

Manually analyzing the stack is often the most powerful technique when dealing with crashes
such as these. Typically, this involves dumping the current stack pointer register (for example, esp
and rsp on 32-bit and x64 respectively). However, because the code responsible for crashing the
system itself might modify the stack in ways that make analysis difficult, the processor
responsible for crashing the system provides a backing store for the current data in the stack,
called KiPreBugcheckStackSaveArea, which contains a copy of the stack before any code in
KeBugCheckEx executes. By using the dps (dump pointer with symbols) command in the
debugger, you can dump this area (instead of the CPU’s stack pointer register) and resolve
symbols in an attempt to discover any potential stack traces. In this crash, here’s what dumping

the stack area eventually revealed on a 32-bit system.

1. kd> dps KiPreBugcheckStackSaveArea KiPreBugcheckStackSaveArea+3000
2. 81d7dd20 881fcc44
3. 81d7dd24 98fcf406 myfault+0x406

1032

4. 81d7dd28 badb0d00

Although this data was located among many other different functions, it is of special interest
because it mentions a function in the Myfault driver, which as we’ve seen was currently executing
an IRP, that doesn’t show on the stack. For more information on manual stack analysis, see the
Debugging Tools for Windows help file and the additional resources referenced later in this
chapter.

14.9.2 Hung or Unresponsive Systems

If a system becomes unresponsive (that is, you are receiving no response to keyboard or
mouse input), the mouse freezes, or you can move the mouse but the system doesn’t respond to
clicks, the system is said to have hung. A number of things can cause the system to hang:

m A device driver does not return from its interrupt service (ISR) routine or deferred
procedure call (DPC) routine

m A high priority real-time thread preempts the windowing system driver’s input threads

m A deadlock (when two threads or processors hold resources each other wants and neither
will yield what they have) occurs in kernel mode

You can check for deadlocks by using the Driver Verifier option called deadlock detection.
Deadlock detection monitors the use of spinlocks, fast mutexes, and mutexes, looking for patterns
that could result in a deadlock. (For more information on these and other synchronization
primitives, see Chapter 3.) If one is found, the Driver Verifier crashes the system with an
indication of which driver causes the deadlock. The simplest form of deadlock occurs when two
threads hold resources each other thread wants and neither will yield what they have or give up
waiting for the one they want. The first step to troubleshooting hung systems is therefore to enable
deadlock detection on suspect drivers, then unsigned drivers, and then all drivers, until you get a
crash that pinpoints the driver causing the deadlock.

There are two ways to approach a hanging system so that you can apply the manual crash
troubleshooting techniques described in this chapter to determine what driver or component is
causing the hang: the first is to crash the hung system and hope that you get a dump that you can
analyze, and the second is to break into the system with a kernel debugger and analyze the
system’s activity. Both approaches require prior setup and a reboot. You use the same exploration
of system state with both approaches to try and determine the cause of the hang.

To manually crash a hung system, you must first add the DWORD registry value HKLM\
SYSTEM\CurrentControlSet\Services\i8042prt\Parameters\CrashOnCtrlScroll and set it to 1.
After rebooting, the 18042 port driver, which is the port driver for PS2 keyboard input, monitors
keystrokes in its ISR (discussed further in Chapter 3) looking for two presses of the scroll lock key
while the right control key is depressed. When the driver sees that sequence, it calls
KeBugCheckEx with the MANUALLY INITIATED CRASH (0xE2) stop code that indicates a
manually initiated crash. When the system reboots, open the crash dump file and apply the
techniques mentioned earlier to try and determine why the system was hung (for example,
determining what thread was running when the system hung, what the kernel stack indicates was

1033

happening, and so on). Note that this works for most hung system scenarios, but it won’t work if
the 18042 port driver’s ISR doesn’t execute. (The 18042 port driver’s ISR won’t execute if all
processors are hung as a result of their IRQL being higher than the ISR’s IRQL, or if corruption of
system data structures extends to interrupt-related code or data.)

Note Manually crashing a hung system by using the support provided in the 18042 port driver
does not work with USB keyboards. It works with PS2 keyboards only.

You can also trigger a crash if your hardware has a built-in “crash” button. (Some high-end
servers have this.) In this case, the crash is initiated by signaling the nonmaskable interrupt (NMI)
pin of the system’s motherboard. To enable this, set the registry DWORD value
HKLM\SYSTEM\CurrentControlSet\Control\CrashContro\NMICrashDump to 1. Then, when
you press the dump switch, an NMI is delivered to the system and the kernel’s NMI interrupt
handler calls KeBugCheckEx. This works in more cases than the 18042 port driver mechanism
because the NMI IRQL is always higher than that of the i8042 port driver interrupt. See
www.microsoft.com/whdc/system/sysinternals/dmpsw.mspx for more information.

If you are unable to manually generate a crash dump, you can attempt to break into the hung
system by first making the system boot into debugging mode. You do this in one of two ways.
You can press the F8 key during the boot and select Debugging Mode, or you can create a
debugging-mode boot option in the BCD by copying an existing boot entry and adding the debug
option. When using the F8 approach, the system will use the default connection (Serial Port
COM2 and 19200 Baud), but you can use the F10 key to display the Edit Boot Options screen to
edit debug-related boot options. With the debug option, you must also configure the connection
mechanism to be used between the host system running the kernel debugger and the target system
booting in debugging mode and then configure the debugport and baudrate switches appropriately
for the connection type. The three connection types are a null modem cable using a serial port, an
IEEE 1394 (FireWire) cable using 1394 ports on each system, or a USB 2.0 host-to-host cable
using USB ports on each system. For details on configuring the host and target system for kernel
debugging, see the Debugging Tools for Windows help file.

When booting in debugging mode, the system loads the kernel debugger at boot time and
makes it ready for a connection from a kernel debugger running on a different computer connected
through a serial cable, IEEE 1394 cable, or USB 2.0 host-to-host cable. Note that the kernel
debugger’s presence does not affect performance. When the system hangs, run the WinDbg or Kd
debugger on the connected system, establish a kernel debugging connection, and break into the
hung system. This approach will not work if interrupts are disabled or the kernel debugger has
become corrupted.

Note Booting a system in debugging mode does not affect performance if it’s not connected
to another system; however, a system that’s configured to automatically reboot after a crash will
not do so if it’s booted with kernel debugging enabled, because the kernel debugger waits for a
connection from another system after a crash.

Instead of leaving the system in its halted state while you perform analysis, you can also use
the debugger .dump command to create a crash dump file on the host debugger machine. Then you
can reboot the hung system and analyze the crash dump offline (or submit it to Microsoft). Note

1034

that this can take a long time if you are connected using a serial null modem cable or USB 2.0
connection (versus a higher speed 1394 connection), so you might want to just capture a
minidump using the .dump /m command. Alternatively, if the target machine is capable of writing
a crash dump, you can force it to do so by issuing the .crash command from the debugger. This
will cause the target machine to create a dump on its local hard drive that you can examine after
the system reboots.

You can cause a hang by running Notmyfault and selecting the Hang option. This causes the
Myfault driver to queue a DPC on each processor of the system that executes an infinite loop.
Because the IRQL of the processor while executing DPC functions is DPC/dispatch level, the
keyboard ISR will respond to the special keyboard crashing sequence. Once you’ve broken into a
hung system or loaded a manually generated dump from a hung system into a debugger, you
should execute the !analyze command with the —hang option. This causes the debugger to examine
the locks on the system and try to determine whether there’s a deadlock, and if so, what driver or
drivers are involved. However, for a hang like the one that Notmyfault’s Hang option generates,
the !analyze analysis command will report nothing useful.

If the !analyze command doesn’t pinpoint the problem, execute !thread and !process in each
of the dump’s CPU contexts to see what each processor is doing. (Switch CPU contexts with the ~
command—for example, use ~1 to switch to processor 1’s context.) If a thread has hung the
system by executing in an infinite loop at an IRQL of DPC/dispatch level or higher, you’ll see the
driver module in which it has become stuck in the stack trace of the !thread command. The stack
trace of the crash dump you get when you crash a system experiencing the Notmyfault hang bug
looks like this:

STACK TEXT:
. 9e66ed8 f9b0d681 000000e2 00000000 00000000 nt!KeBugCheckEx+0x19

3. 9e66ef4 f9b0cefb 0069b0d8 010000c6 00000000 18042prt! I8xProcessCrashDump
+0x235

4. 9e66f3c 804ebb04 81797d98 81696020 00010009 i8042prt!18042K eyboardInterruptS

ervice+0x21c

9e66f3c fal2e34a 81797d98 81696020 00010009 nt!KilnterruptDispatch+0x3d

WARNING: Stack unwind information not available. Following frames may be wrong.

ffdff980 8169288 9e67000 0000210f 00000004 myfault+0x34a

8054ace4 ffdff980 804ebf58 00000000 0000319¢ 0x8169bH288

8054ace4 ffdff980 804ebf58 00000000 0000319¢ 0xffdffI80

10. 8169ae9c 8054ace4 f9b12b0f 8169ac88 00000000 0xffdffO80

11.

The top few lines of the stack trace reference the routines that execute when you type the 18042

ORI NI

port driver’s crash key sequence. The presence of the Myfault driver indicates that it might be
responsible for the hang. Another command that might be revealing is !locks, which dumps the
status of all executive resource locks. By default, the command lists only resources that are under
contention, which means that they are both owned and have at least one thread waiting to acquire
them. Examine the thread stacks of the owners with the !thread command to see what driver they
might be executing in. Sometimes you will find that the owner of one of the locks is waiting for an
IRP to complete (a list of IRPs related to a thread is displayed in the !thread output). In these cases

1035

it is very hard to tell why an IRP is not making forward progress. (IRPs are usually queued to
privately managed driver queues before they are completed). One thing you can do is examine the
IRP with the lirp command and find the driver that pended the IRP (it will have the word
“pending” displayed in its stack location from the lirp output). Once you have the driver name,
you can use the !stacks command to look for other threads that the driver might be running on,
which often provides clues about what the lock-owning driver is doing. Much of the time you will
find the driver is deadlocked or waiting on some other resource that is blocked waiting for the

driver.

14.9.3 When There Is No Crash Dump

In this section, we’ll address how to troubleshoot systems that for some reason are not
recording a crash dump. One reason why a crash dump might not be recorded is if the paging file
on the boot volume is too small to hold the dump. This can easily be remedied by increasing the
size of the paging file. A second reason why there might not be a crash dump recorded is because
the kernel code and data structures needed to write the crash dump have been corrupted at the time
of the crash. As described earlier, this data is checksummed when the system boots, and if the
checksum made at the time of the crash does not match, the system does not even attempt to save
the crash dump (so as not to risk corrupting data on the disk). So in this case, you need to catch the
system as it crashes and then try to determine the reason for the crash.

Another reason occurs when the disk subsystem for the system disk is not able to process
disk write requests (a condition that might have triggered the system failure itself). One such
condition would be a hardware failure in the disk controller or maybe a cabling issue near the hard
disk.

Yet another possibility occurs when the system has drivers that have registered to add
secondary dump data to the dump file. When the driver callbacks are called, they might
incorrectly access data structures located in paged memory (for example), which will lead to a
second crash.

One simple option is to turn off the Automatically Restart option in the Startup And
Recovery settings so that if the system crashes, you can examine the blue screen on the console.
However, only the most straightforward crashes can be solved from just the blue-screen text.

To perform more in-depth analysis, you need to use the kernel debugger to look at the system
at the time of the crash. This can be done by booting the system in debugging mode, which is
described in the previous section. When a system is booted in debugging mode and crashes,
instead of painting the blue screen and attempting to record the dump, it will wait forever until a
host kernel debugger is connected. In this way, you can see the reason for the crash and perhaps
perform some basic analysis using the kernel debugger commands described earlier. As mentioned
in the previous section, you can use the .dump command in the debugger to save a copy of the
crashed system’s memory space for later debugging, thus allowing you to reboot the crashed
system and debug the problem offline.

1036

The operating system code and data structures that handle processor exceptions can become
corrupted such that a series of recursive faults occur. One example of this would be if the
operating system trap handler got corrupted and caused a page fault. This would invoke the page
fault handler, which would fault again, and so on. If such a situation occurred, the system would
be hopelessly stuck. To prevent such a situation from occurring, CPUs have a builtin recursive
fault protection mechanism, which sets a hard limit on the depth of a recursive fault. On most x86
processors, a fault can nest to two levels deep. When the third recursive fault occurs, the processor
resets itself and the machine reboots. This is called a triple fault. This can happen when there’s a
faulty hardware component as well. Even a kernel debugger won’t be invoked in a triple fault
situation. However, sometimes the mere fact that the kernel debugger doesn’t activate can confirm
that there’s a problem with newly added hardware or drivers.

Note You can use the kernel debugger to trigger a triple fault on a machine by setting a
breakpoint on the kernel debugger dispatch routine KiDispatchException. This happens because
the exception dispatcher now causes a breakpoint exception, which invokes the exception

dispatcher, and so on.

1037

RICCARDO
StrikeOut

RICCARDO
StrikeOut

RICCARDO
StrikeOut

